skip to main content


Search for: All records

Award ID contains: 1753915

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Hand position can be estimated by vision and proprioception (position sense). The brain is thought to weight and integrate these percepts to form a multisensory estimate of hand position with which to guide movement. Force field adaptation, a type of cerebellum-dependent motor learning, is associated with both motor and proprioceptive changes. The cerebellum has connections with multisensory parietal regions; however, it is unknown if force adaptation is associated with changes in multisensory perception. If force adaptation affects all relevant sensory modalities similarly, the brain’s weighting of vision vs. proprioception should be maintained. Alternatively, if force perturbation is interpreted as somatosensory unreliability, vision may be up-weighted relative to proprioception. We assessed visuo-proprioceptive weighting with a perceptual estimation task before and after subjects performed straight-ahead reaches grasping a robotic manipulandum. Each subject performed one session with a clockwise or counter-clockwise velocity-dependent force field, and one session in a null field. Subjects increased their weight of vision vs. proprioception in the force field session relative to the null session, regardless of force field direction, in the straight-ahead dimension (F1,44 = 5.13, p = 0.029). This suggests that force field adaptation is associated with an increase in the brain’s weighting of vision vs. proprioception.

     
    more » « less
  2. Spatial perception of our hand is closely linked to our ability to move the hand accurately. We might therefore expect that reach planning would take into account any changes in perceived hand position; in other words, that perception and action relating to the hand should depend on a common sensorimotor map. However, there is evidence to suggest that changes in perceived hand position affect a body representation that functions separately from the body representation used to control movement. Here, we examined target-directed reaching before and after participants either did (Mismatch group) or did not (Veridical group) experience a cue conflict known to elicit recalibration in perceived hand position. For the reaching task, participants grasped a robotic manipulandum that positioned their unseen hand for each trial. Participants then briskly moved the handle straight ahead to a visual target, receiving no performance feedback. For the perceptual calibration task, participants estimated the locations of visual, proprioceptive, or combined cues about their unseen hand. The Mismatch group experienced a gradual 70-mm forward mismatch between visual and proprioceptive cues, resulting in forward proprioceptive recalibration. Participants made significantly shorter reaches after this manipulation, consistent with feeling their hand to be further forward than it was, but reaching performance returned to baseline levels after only 10 reaches. The Veridical group, after exposure to veridically aligned visual and proprioceptive cues about the hand, showed no change in reach distance. These results suggest that perceptual recalibration affects the same sensorimotor map that is used to plan target-directed reaches. NEW & NOTEWORTHY If perceived hand position changes, we might assume this affects the sensorimotor map and, in turn, reaches made with that hand. However, there is evidence for separate body representations involved in perception versus action. After a cross-sensory conflict that results in proprioceptive recalibration in the forward direction, participants made shorter reaches as predicted, but only briefly. This suggests perceptual recalibration does affect the sensorimotor map used to plan reaches, but the interaction may be short-lived. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  3. The brain estimates hand position using vision and position sense (proprioception). The relationship between visual and proprioceptive estimates is somewhat flexible: visual information about the index finger can be spatially displaced from proprioceptive information, resulting in cross-sensory recalibration of the visual and proprioceptive unimodal position estimates. According to the causal inference framework, recalibration occurs when the unimodal estimates are attributed to a common cause and integrated. If separate causes are perceived, then recalibration should be reduced. Here we assessed visuo-proprioceptive recalibration in response to a gradual visuo-proprioceptive mismatch at the left index fingertip. Experiment 1 asked how frequently a 70 mm mismatch is consciously perceived compared to when no mismatch is present, and whether awareness is linked to reduced visuo-proprioceptive recalibration, consistent with causal inference predictions. However, conscious offset awareness occurred rarely. Experiment 2 tested a larger displacement, 140 mm, and asked participants about their perception more frequently, including at 70 mm. Experiment 3 confirmed that participants were unbiased at estimating distances in the 2D virtual reality display. Results suggest that conscious awareness of the mismatch was indeed linked to reduced cross-sensory recalibration as predicted by the causal inference framework, but this was clear only at higher mismatch magnitudes (70–140 mm). At smaller offsets (up to 70 mm), conscious perception of an offset may not override unconscious belief in a common cause, perhaps because the perceived offset magnitude is in range of participants’ natural sensory biases. These findings highlight the interaction of conscious awareness with multisensory processes in hand perception. 
    more » « less
  4. Abstract When visual and proprioceptive estimates of hand position disagree (e.g., viewing the hand underwater), the brain realigns them to reduce mismatch. This perceptual change is reflected in primary motor cortex (M1) excitability, suggesting potential relevance for hand movement. Here, we asked whether fingertip visuo-proprioceptive misalignment affects only the brain’s representation of that finger (somatotopically focal), or extends to other parts of the limb that would be needed to move the misaligned finger (somatotopically broad). In Experiments 1 and 2, before and after misaligned or veridical visuo-proprioceptive training at the index finger, we used transcranial magnetic stimulation to assess M1 representation of five hand and arm muscles. The index finger representation showed an association between M1 excitability and visuo-proprioceptive realignment, as did the pinkie finger representation to a lesser extent. Forearm flexors, forearm extensors, and biceps did not show any such relationship. In Experiment 3, participants indicated their proprioceptive estimate of the fingertip, knuckle, wrist, and elbow, before and after misalignment at the fingertip. Proprioceptive realignment at the knuckle, but not the wrist or elbow, was correlated with realignment at the fingertip. These results suggest the effects of visuo-proprioceptive mismatch are somatotopically focal in both sensory and motor domains. 
    more » « less
  5. Trial-and-error motor adaptation has been linked to somatosensory plasticity and shifts in proprioception (limb position sense). The role of sensory processing in motor skill learning is less understood. Unlike adaptation, skill learning involves the acquisition of new movement patterns in the absence of perturbation, with performance limited by the speed-accuracy tradeoff. We investigated somatosensory changes during motor skill learning at the behavioral and neurophysiological level. Twenty-eight healthy young adults practiced a maze-tracing task, guiding a robotic manipulandum through an irregular 2D track featuring several abrupt turns. Practice occurred on days 1 and 2. Skill was assessed before practice on day 1 and again on day 3, with learning indicated by a shift in the speed-accuracy function between these assessments. Proprioceptive function was quantified with a passive two-alternative forced choice task. In a subset of 15 participants, we measured short latency afferent inhibition (SAI) to index somatosensory projections to motor cortex. We found that motor practice enhanced the speed-accuracy skill function (F 4,108 = 32.15, p < 0.001) and was associated with improved proprioceptive sensitivity at retention (t 22 = 24.75, p = 0.0031). Further, SAI increased after training (F 1,14 = 5.41, p = 0.036). Interestingly, individuals with larger increases in SAI, reflecting enhanced somatosensory afference to motor cortex, demonstrated larger improvements in motor skill learning. These findings suggest that SAI may be an important functional mechanism for some aspect of motor skill learning. Further research is needed to test what parameters (task complexity, practice time, etc) are specifically linked to somatosensory function. 
    more » « less