skip to main content


Search for: All records

Award ID contains: 1753993

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Microbial communities associated with plant leaf surfaces (i.e., the phyllosphere) are increasingly recognized for their role in plant health. While accumulating evidence suggests a role for host filtering of its microbiota, far less is known about how community composition is shaped by dispersal, including from neighboring plants. We experimentally manipulated the local plant neighborhood within which tomato, pepper, or bean plants were grown in a 3-month field trial. Focal plants were grown in the presence of con- or hetero-specific neighbors (or no neighbors) in a fully factorial combination. At 30-day intervals, focal plants were harvested and replaced with a new age- and species-matched cohort while allowing neighborhood plants to continue growing. Bacterial community profiling revealed that the strength of host filtering effects (i.e., interspecific differences in composition) decreased over time. In contrast, the strength of neighborhood effects increased over time, suggesting dispersal from neighboring plants becomes more important as neighboring plant biomass increases. We next implemented a cross-inoculation study in the greenhouse using inoculum generated from the field plants to directly test host filtering of microbiomes while controlling for directionality and source of dispersal. This experiment further demonstrated that focal host species, the host from which the microbiome came, and in one case the donor hosts’ neighbors, contribute to variation in phyllosphere bacterial composition. Overall, our results suggest that local dispersal is a key factor in phyllosphere assembly, and that demographic factors such as nearby neighbor identity and biomass or age are important determinants of phyllosphere microbiome diversity.

     
    more » « less
  2. There is increasing interest in the plant microbiome as it relates to both plant health and agricultural sustainability. One key unanswered question is whether we can select for a plant microbiome that is robust after colonization of target hosts. We used a successive passaging experiment to address this question by selecting upon the tomato phyllosphere microbiome. Beginning with a diverse microbial community generated from field-grown tomato plants, we inoculated replicate plants across 5 plant genotypes for 4 45-d passages, sequencing the microbial community at each passage. We observed consistent shifts in both the bacterial (16S amplicon sequencing) and fungal (internal transcribed spacer region amplicon sequencing) communities across replicate lines over time, as well as a general loss of diversity over the course of the experiment, suggesting that much of the naturally observed microbial community in the phyllosphere is likely transient or poorly adapted within the experimental setting. We found that both host genotype and environment shape microbial composition, but the relative importance of genotype declines through time. Furthermore, using a community coalescence experiment, we found that the bacterial community from the end of the experiment was robust to invasion by the starting bacterial community. These results highlight that selecting for a stable microbiome that is well adapted to a particular host environment is indeed possible, emphasizing the great potential of this approach in agriculture and beyond. In light of the consistent response of the microbiome to selection in the absence of reciprocal host evolution (coevolution) described here, future studies should address how such adaptation influences host health. 
    more » « less
  3. ABSTRACT The timing of life history events has important fitness consequences. Since the 1950s, researchers have combined first principles and data to predict the optimal timing of life history transitions. Recently, a striking mystery has emerged. Such transitions can be shaped by a completely different branch of the tree of life: species in the microbiome. Probing these interactions using testable predictions from evolutionary theory could illuminate whether and how host-microbiome integrated life histories can evolve and be maintained. Beyond advancing fundamental science, this research program could yield important applications. In an age of microbiome engineering, understanding the contexts that lead to microbiota signaling shaping ontogeny could offer novel mechanisms for manipulations to increase yield in agriculture by manipulating plant responses to stressful environments, or to reduce pathogen transmission by affecting vector efficiency. We combine theory and evidence to illuminate the essential questions underlying the existence of mi crobiome- d ependent o ntogenetic t iming (MiDOT) to fuel research on this emerging topic. 
    more » « less