Several species of vector mosquitoes (eg Culex pipiens (Linnaeus, 1758), Aedes albopictus (Skuse, 1895)) complete juvenile development in artificial containers. Rain barrels are green infrastructure tools used to conserve rainwater for outdoor use, though they may also serve as a source of mosquito habitat in residential neighborhoods. To identify rain barrel features, maintenance habits, and other conditions associated with the presence of juvenile mosquitoes (ie month), we conducted periodic inspections of rain barrels at 53 households in central Illinois, USA between June and September 2016. Additionally, we administered a questionnaire to the household study participants. In the first month of the study, a diversity of mosquito species was detected in household rain barrels, but from July to September juveniles of Ae. albopictus were predominant. More than half of inspected households contained at least one mosquito-positive rain barrel within the study period. Using stepwise model selection, the strongest predictors of whether or not mosquito juveniles were detected in rain barrels were the use of a preventative measure (eg Bti, chlorine, goldfish), the presence of a mesh covering on the lid of the barrel, and the month of the year. Additionally, the participant questionnaire revealed that the majority of respondents were aware of immediate elimination methods, but few were aware of the need for long-term preventative maintenance of rain barrels against larval mosquito colonization. These findings provide valuable insight into best practices for mosquito prevention in green infrastructure and highlight the importance of proper maintenance and education to minimize juvenile mosquito habitat.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Immune responses can be energetically expensive and subject to trade-offs. Prior work on the freshwater zooplankton, Ceriodaphnia cornuta, demonstrated an association between eye size and infection, leading to questions about whether investment in eyes trades off against investment in immunity. We used the crustacean host, Daphnia dentifera, and its fungal parasite, Metschnikowia bicuspidata, to investigate the relationships between eye size, parasite resistance and infection. In the field, we found a negative correlation between size-corrected eye area (SCEA) and Metschnikowia infection, suggesting that either SCEA decreases infection (thereby indicating resistance) or that infection decreases SCEA. Controlled laboratory experiments reinforced the latter result: exposure to the fungal parasite decreased a host’s SCEA, regardless of the parasite dose or host genotype. We also uncovered significant plasticity in this trait—both host age and resource level increased SCEA. Identifying causality in physiological correlations is challenging. Our results suggest that negative associations between parasitism and energetically-expensive traits can arise through plasticity.
-
Abstract The assembly of host‐associated microbial communities is influenced by multiple factors, but the effect of microbiomes on host phenotypes is often not well understood. To address questions of food‐web effects on host microbiome assembly, we manipulated the resource environment (grass only [G] vs. grass + nutrients [GN]), competition type (intra‐ vs. inter‐specific) and density (high vs. low) for
Culex restuan s mosquito larvae. We predicted the microbial communities in fourth‐instar larvae would differ between these environmental treatments and that these treatments would translate into differences in the adult phenotype.Resource environment and density influenced the larval microbiome. In addition, the larval microbiome exhibited notable differences compared to the free‐living microbial communities.
Resource‐driven differences in the larval samples can be attributed to Arcobacteraceae being more abundant in larvae reared in the GN treatments relative to those reared in the G treatments and Comamonadaceae being more abundant in the G treatment. Although significant, the difference in community structure between density treatments was difficult to discern. This appears to be driven by Weeksellaceae only being abundant in the high‐density, interspecific, GN treatment.
Rearing larvae to adulthood under severe food limitation resulted in low survival (<25%) in both resource environments. Approximately 60% of survivors to adulthood were male. Larvae reared in the intraspecific, G treatment had the shortest development time to adulthood and emerged as the smallest adults.
These results demonstrate how environmental variation can significantly alter the alpha and beta diversity of free‐living microbes, which in turn can significantly affect host phenotype and critical life history traits, such as development time, size at adulthood, and survival. These findings highlight the importance of considering environmental influences on microbiome diversity to understand and predict host outcomes, offering valuable insights for diverse applications in fields such as ecology, public health, and agriculture.
Free, publicly-accessible full text available July 3, 2025 -
Abstract Insecticide resistance has emerged as a persistent threat to the fight against vector-borne diseases. We compared the gut microbiota of permethrin-selected (PS) strain of
Aedes aegypti relative to the parent (KW) strain from Key West, Florida. Bacterial richness but not diversity was significantly higher in PS strain compared to KW strain. The two mosquito strains also differed in their gut microbial composition.Cutibacterium spp.,Corynebacterium spp.,Citricoccus spp.,Leucobacter spp.,Acinetobacter spp.,Dietzia spp., andAnaerococcus spp. were more abundant in PS strain than in KW strain. In contrast,Sphingomonas spp.,Aquabacterium spp.,Methylobacterium spp.,Flavobacterium spp.,Lactobacillus spp., unclassified Burkholderiaceae and unclassified Nostocaceae were more abundant in KW strain compared to PS strain. PS strain was enriched with propionate metabolizers, selenate reducers, and xylan, chitin, and chlorophenol degraders while KW strain was enriched with sulfur oxidizers, sulfur metabolizers, sulfate reducers and naphthalene and aromatic hydrocarbons degraders. These findings demonstrate an association between the gut microbiota and insecticide resistance in an important vector species and sets the foundation for future studies to investigate the contribution of gut microbiota to evolution of insecticide resistance in disease vectors. -
null (Ed.)Abstract Mosquito bacterial communities are essential in mosquito biology, and knowing the factors shaping these bacterial communities is critical to their application in mosquito-borne disease control. This study investigated how the larval environment influences the bacterial communities of larval stages of two container-dwelling mosquito species, Aedes triseriatus, and Aedes japonicus. Larval and water samples were collected from tree holes and used tires at two study sites, and their bacteria characterized through MiSeq sequencing of the 16S rRNA gene. Bacterial richness was highest in Ae. japonicus , intermediate in Ae. triseriatus , and lowest in water samples. Dysgonomonas was the dominant bacterial taxa in Ae. triseriatus larvae; the unclassified Comamonadaceae was dominant in water samples from waste tires, while Mycobacterium and Carnobacterium , dominated Ae. japonicus . The two mosquito species harbored distinct bacterial communities that were different from those of the water samples. The bacterial communities also clustered by habitat type (used tires vs. tree holes) and study site. These findings demonstrate that host species, and the larval sampling environment are important determinants of a significant component of bacterial community composition and diversity in mosquito larvae and that the mosquito body may select for microbes that are generally rare in the larval environment.more » « less
-
null (Ed.)Abstract Background The bacterial communities associated with mosquito eggs are an essential component of the mosquito microbiota, yet there are few studies characterizing and comparing the microbiota of mosquito eggs to other host tissues. Methods We sampled gravid female Culex pipiens L. and Culex restuans Theobald from the field, allowed them to oviposit in the laboratory, and characterized the bacterial communities associated with their egg rafts and midguts for comparison through MiSeq sequencing of the 16S rRNA gene. Results Bacterial richness was higher in egg rafts than in midguts for both species, and higher in Cx pipiens than Cx. restuans . The midgut samples of Cx. pipiens and Cx. restuans were dominated by Providencia. Culex pipiens and Cx. restuans egg rafts samples were dominated by Ralstonia and Novosphingobium , respectively. NMDS ordination based on Bray-Curtis distance matrix revealed that egg-raft samples, or midgut tissues harbored similar bacterial communities regardless of the mosquito species. Within each mosquito species, there was a distinct clustering of bacterial communities between egg raft and midgut tissues. Conclusion These findings expand the list of described bacterial communities associated with Cx. pipiens and Cx. restuan s and the additional characterization of the egg raft bacterial communities facilitates comparative analysis of mosquito host tissues, providing a basis for future studies seeking to understand any functional role of the bacterial communities in mosquito biology.more » « less
-
ABSTRACT We examined how larvae of Culex restuans mosquito influences the bacterial abundance, composition and diversity in simulated container aquatic habitats. The microbiota of Cx. restuans larvae were also characterized and compared to those of their larval habitats. The presence of Cx. restuans larvae altered the bacterial community composition and reduced the bacterial abundance, diversity and richness. Azohydromonas sp., Delftia sp., Pseudomonas sp., Zooglea sp., unclassified Enterobacteriaceae and unclassified Bacteroidales were suppressed while Prosthecobacter sp., Hydrogenaphaga sp., Clostridium sp., unclassified Clostridiaceae and Chryseobacterium sp. were enhanced in the presence of Cx. restuans larvae. Cx. restuans larvae harbored distinct and less diverse bacterial community compared to their larval habitats. These findings demonstrate that Cx. restuans larvae play a key role in structuring the microbial communities in container aquatic habitats and may lower the nutritional quality and alter the decomposition process and food web dynamics in these aquatic systems. The findings also demonstrate that mosquito larvae are highly selective of the bacterial taxa from the larval environment that colonize their bodies. These findings provide new opportunities for more focused studies to identify the specific bacterial taxa that serve as food for mosquito larvae and those that could be harnessed for disease control.more » « less