skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1754337

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Coptotermes formosanusShiraki andCoptotermes gestroi(Wasmann) (Blattoidea: Rhinotermitidae) are invasive subterranean termite pest species with a major global economic impact. However, the descriptions of the mutualistic protist communities harbored in their respective hindguts remain fragmentary. TheC. formosanushindgut has long been considered to harbor three protist species,Pseudotrichonympha grassii(Trichonymphida),Holomastigotoides hartmanni, andCononympha(Spirotrichonympha)leidyi(Spirotrichonymphida), but molecular data have suggested that the diversity may be higher. Meanwhile, theC. gestroicommunity remains undescribed except forPseudotrichonympha leei. To complete the characterization of these communities, hindguts of workers from both termite species were investigated using single‐cell PCR, microscopy, cell counts, and 18S rRNA amplicon sequencing. The two hosts were found to harbor intriguingly parallel protist communities, each consisting of onePseudotrichonymphaspecies, twoHolomastigotoidesspecies, and twoCononymphaspecies. All protist species were unique to their respective hosts, which last shared a common ancestor ~18 MYA. The relative abundances of protist species in each hindgut differed remarkably between cell count data and 18S rRNA profiles, calling for caution in interpreting species abundances from amplicon data. This study will enable future research inC. formosanusandC. gestroihybrids, which provide a unique opportunity to study protist community inheritance, compatibility, and potential contribution to hybrid vigor. 
    more » « less
  2. ABSTRACT Termites have a unique ability to effectively digest lignocellulose with the help of mutualistic symbionts. While gut bacteria and protozoa have been relatively well characterized in termites, the virome remains largely unexplored. Here, we report two genomes of microviruses (termite-associated microvirus-1 [TaMV-1] and termite-associated microvirus-2 [TaMV-2]) associated with the gut of Coptotermes formosanus . 
    more » « less