Plant–mycorrhizal interactions mediate plant nitrogen (N) limitation and can inform model projections of the duration and strength of the effect of increasing CO2on plant growth. We present dendrochronological evidence of a positive, but context-dependent fertilization response of
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Quercus rubra L . to increasing ambient CO2(iCO2) along a natural soil nutrient gradient in a mature temperate forest. We investigated this heterogeneous response by linking metagenomic measurements of ectomycorrhizal (ECM) fungal N-foraging traits and dendrochronological models of plant uptake of inorganic N and N bound in soil organic matter (N-SOM). N-SOM putatively enhanced tree growth under conditions of low inorganic N availability, soil conditions where ECM fungal communities possessed greater genomic potential to decay SOM and obtain N-SOM. These trees were fertilized by 38 years of iCO2. In contrast, trees occupying inorganic N rich soils hosted ECM fungal communities with reduced SOM decay capacity and exhibited neutral growth responses to iCO2. This study elucidates how the distribution of N-foraging traits among ECM fungal communities govern tree access to N-SOM and subsequent growth responses to iCO2. -
Abstract Fine root litter is a primary source of soil organic matter (SOM), which is a globally important pool of C that is responsive to climate change. We previously established that ~20 years of experimental nitrogen (N) deposition has slowed fine root decay and increased the storage of soil carbon (C; +18%) across a widespread northern hardwood forest ecosystem. However, the microbial mechanisms that have directly slowed fine root decay are unknown. Here, we show that experimental N deposition has decreased the relative abundance of Agaricales fungi (−31%) and increased that of partially ligninolytic Actinobacteria (+24%) on decaying fine roots. Moreover, experimental N deposition has increased the relative abundance of lignin‐derived compounds residing in SOM (+53%), and this biochemical response is significantly related to shifts in both fungal and bacterial community composition. Specifically, the accumulation of lignin‐derived compounds in SOM is negatively related to the relative abundance of ligninolytic
Mycena andKuehneromyces fungi, and positively related to Microbacteriaceae. Our findings suggest that by altering the composition of microbial communities on decaying fine roots such that their capacity for lignin degradation is reduced, experimental N deposition has slowed fine root litter decay, and increased the contribution of lignin‐derived compounds from fine roots to SOM. The microbial responses we observed may explain widespread findings that anthropogenic N deposition increases soil C storage in terrestrial ecosystems. More broadly, our findings directly link composition to function in soil microbial communities, and implicate compositional shifts in mediating biogeochemical processes of global significance. -
null (Ed.)Abstract Plants associating with mutualistic ectomycorrhizal (ECM) fungi may directly obtain nitrogen (N) bound in soil organic matter (N-SOM). However, the contribution of N-SOM to plant growth under field conditions remains poorly constrained. We tested the hypothesis that turnover in ECM communities along soil inorganic N gradients mediates a functional transition from plant reliance on N-SOM in low inorganic N soils, to primarily inorganic N uptake in inorganic N-rich condition soils. We quantified the δ 15 N of Q. rubra foliage and roots, organic and inorganic soil N pools, and used molecular sequencing to characterize ECM communities, morpho-traits associated with N-foraging, and a community aggregated sporocarp δ 15 N. In support of our hypothesis, we document the progressive enrichment of root and foliar δ 15 N with increasing soil inorganic N supply; green leaves ranged from − 5.95 to 0.16‰ as the supply of inorganic N increased. ECM communities inhabiting low inorganic N soils were dominated by the genus Cortinarius, and other fungi forming hyphal morphologies putatively involved in N-SOM acquisition; sporocarp estimates from these communities were enriched (+ 4‰), further supporting fungal N-SOM acquisition. In contrast, trees occurring in high inorganic N soils hosted distinct communities with morpho-traits associated with inorganic N acquisition and depleted sporocarps (+ 0.5‰). Together, our results are consistent with apparent tradeoffs in the foraging cost and contribution of N-SOM to plant growth and demonstrate linkages between ECM community composition, fungal N-foraging potential and foliar δ 15 N. The functional characteristics of ECM communities represent a mechanistic basis for flexibility in plant nutrient foraging strategies. We conclude that the contribution of N-SOM to plant growth is likely contingent on ECM community composition and local soil nutrient availability.more » « less