Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)A continuously growing pressure to increase food, fiber, and fuel production to meet worldwide demand and achieve zero hunger has put severe pressure on soil resources. Abandoned, degraded, and marginal lands with significant agricultural constraints—many still used for agricultural production—result from inappropriately intensive management, insufficient attention to soil conservation, and climate change. Continued use for agricultural production will often require ever more external inputs such as fertilizers and herbicides, further exacerbating soil degradation and impeding nutrient recycling and retention. Growing evidence suggests that degraded lands have a large potential for restoration, perhaps most effectively via perennial cropping systems that can simultaneously provide additional ecosystem services. Here we synthesize the advantages of and potentials for using perennial vegetation to restore soil fertility on degraded croplands, by summarizing the principal mechanisms underpinning soil carbon stabilization and nitrogen and phosphorus availability and retention. We illustrate restoration potentials with example systems that deliver climate mitigation (cellulosic bioenergy), animal production (intensive rotational grazing), and biodiversity conservation (natural ecological succession). Perennialization has substantial promise for restoring fertility to degraded croplands, helping to meet future food security needs.more » « less
-
null (Ed.)In nitrogen (N)-limited terrestrial ecosystems, plants employ various strategies to acquire and conserve N, including translocation of N in perennial tissues and stimulation of N fixation in roots and soils. Switchgrass (Panicum virgatum) is a genotypically and phenotypically diverse perennial grass with two distinct ecotypes (lowland and upland) and numerous genotypes. It grows well in low-N soils, likely because of its ability to translocate N and to associate with N-fixing microbes, but little is known about variation in these traits among cultivars or even ecotypes. We measured N translocation, N fixation potential in roots and soils, soil net N mineralization, soil net nitrification, and biomass yields in 12 switchgrass cultivars grown in a replicated block experiment in southwestern Michigan, United States. Lowland cultivars had higher yields, rates of N translocation, soil net N mineralization, and N fixation potentials on washed, nonsterile roots, while upland cultivars exhibited higher N fixation potentials in root-free soil. N resorption efficiencies averaged 53 ± 5% (± standard error) for lowland versus 29 ± 3% for upland cultivars. Additionally, there were significant among-cultivar differences for all response variables except mineralization and nitrification, with differences likely explained by cultivar-specific physiologies and microbial communities. The ideal cultivar for biofuels is one that can maintain high yields with minimal fertilizer addition, and there appear to be several cultivars that meet these criteria. In addition, results suggest substantial N cycle differences among cultivars that might be exploited by breeders to create new or improved high-yielding, N-conserving switchgrass lines.more » « less
-
null (Ed.)Abstract. The active fraction of soil organic carbon is an important component of soil health and often isquickly assessed as the pulse of CO2 released by re-wetting dried soils in short-term(24–72 h) assays. However, soils can lose carbon (C) as they dry and, if soil samples vary in moisture content at sampling, differential C loss during the pre-assay dry-down period maycomplicate the assay's interpretations. We examined the impact of pre-assay CO2 loss ina long-cultivated agricultural soil at initial moisture contents of 30 %, 50 %, and 70 %water-filled pore space (WFPS). We found that 50 % and 70 % WFPS treatments lost more C duringdrying than did those in the 30 % WFPS treatment and that dry-down losses led to a 26 %–32 % underestimate of their CO2 pulses. We developed a soil-specificcorrection factor to account for these initial soil moisture effects. Future C mineralizationstudies may benefit from similar corrections.more » « less
An official website of the United States government
