Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Paneth cells (PCs), a specialized secretory cell type in the small intestine, are increasingly recognized as having an essential role in host responses to microbiome and environmental stresses. Whether and how commensal and pathogenic microbes modify PC composition to modulate inflammation remain unclear. Using newly developed PC‐reporter mice under conventional and gnotobiotic conditions, we determined PC transcriptomic heterogeneity in response to commensal and invasive microbes at single cell level. Infection expands the pool of CD74+PCs, whose number correlates with auto or allogeneic inflammatory disease progressions in mice. Similar correlation was found in human inflammatory disease tissues. Infection‐stimulated cytokines increase production of reactive oxygen species (ROS) and expression of a PC‐specific mucosal pentraxin (Mptx2) in activated PCs. A PC‐specific ablation ofMyD88reduced CD74+PC population, thus ameliorating pathogen‐induced systemic disease. A similar phenotype was also observed in mice lacking Mptx2. Thus, infection stimulates expansion of a PC subset that influences disease progression.more » « less
- 
            Siegel (Ed.)Intestinal microbiota confers susceptibility to diet-induced obesity yet many probiotic species that synthesize tryptophan (trp) actually attenuate this effect, however the underlying mechanisms are unclear. We monocolonized germ-free (GF) mice with a widely consumed probiotic Lacticaseibacillus rhamnosus GG (LGG) under trp-free or -sufficient dietary conditions. We obtained untargeted metabolomics from the mouse feces and serum using liquid chromatography-mass spectrometry and obtained intestinal transcriptomic profiles via bulk-RNA sequencing. When comparing LGG-monocolonized mice with GF mice, we found a synergy between LGG and dietary trp in markedly promoting the transcriptome of fatty acid metabolism and -oxidation. Upregulation was specific and was not observed in transcriptomes of trp-fed conventional mice and mice monocolonized with Ruminococcus gnavus. Metabolomics showed that fecal and serum metabolites were also modified by LGG-host-trp interaction. We developed an R-Script based MEtabolome-TRanscriptome Correlation Analysis (METRCA) algorithm and uncovered LGG- and trp-dependent metabolites that were positively or negatively correlated with fatty acid metabolism and -oxidation gene networks. This high throughput metabolome-transcriptome correlation strategy can be used in similar investigations to reveal potential interactions between specific metabolites and functional or disease-related transcriptomic networks.more » « less
- 
            Kaestner Pack (Ed.)BACKGROUND & AIMS: Lacticaseibacillus rhamnosus GG (LGG) is the world’s most consumed probiotic species but its mechanism of action on intestinal permeability and differentiation as well as its interactions with an essential source of signaling metabolites, dietary tryptophan, are incompletely studied. METHODS: Untargeted metabolomic and transcriptomic analysis were performed for LGG mono-colonized germ-free (GF) mice fed with tryptophan (trp)-free or -sufficient diets. LGG-derived metabolites were profiled in vitro under anaerobic and aerobic conditions. Multiomic correlations were performed using a newly developed metabolome-transcriptome correlating bioinformatic algorism. Newly uncovered gut barrier-modulating metabolites whose abundances are regulated by LGG and dietary trp were functionally tested in Trans-Epithelial Electrical Resistance (TEER) assay, mouse enteroid, and dextran sulfate sodium (DSS) experimental colitis. The contribution of trp-methylnicotinamide (MNA) pathway to barrier protection is delineated at specific tight junction (TJ) proteins and enterocyte-promoting factors with gain and loss of function approaches. RESULTS: LGG, strictly in the presence of dietary trp, promotes the enterocyte program and the expression of multiple TJ genes, particularly Ocln. Fecal and serum metabolites that are synergistically stimulated by LGG and dietary trp are identified. Functional evaluations revealed a novel LGG-stimulated trp-dependent Vitamin B3 metabolism pathway, with MNA unexpectedly being the most robust barrier-protective metabolite in vitro and in vivo. Reduced serum MNA is significantly associated with increased disease activity in IBD patients. Exogenous MNA enhances gut barrier in homeostasis and robustly promotes colonic healing in DSS colitis. MNA is sufficient to promote intestinal epithelial Ocln and RNF43, a master inhibitor of Wnt pathway. Blocking trp or Vitamin B3 absorption abolishes barrier recovery in vivo. CONCLUSIONS: Our study uncovers a novel LGG-regulated dietary trp-dependent production of MNA that protects gut barrier against colitis.more » « less
- 
            Despite numerous studies on the health benefits of the rare sugar allulose, its effects on intestinal mucosal morphology and function are unclear. We therefore first determined its acute effects on the small intestinal transcriptome using DNA microarray analysis following intestinal allulose, fructose and glucose perfusion in rats. Expression levels of about 8-fold more genes were altered by allulose compared to fructose and glucose perfusion, suggesting a much greater impact on the intestinal transcriptome. Subsequent pathway analysis indicated that nutrient transport, metabolism, and digestive system development were markedly upregulated, suggesting allulose may acutely stimulate these functions. We then evaluated whether allulose can restore rat small intestinal structure and function when ingested orally following total parenteral nutrition (TPN). We also monitored allulose effects on blood levels of glucagon-like peptides (GLP) 1 and 2 in TPN rats and normal mice. Expression levels of fatty acid binding and gut barrier proteins were reduced by TPN but rescued by allulose ingestion, and paralleled GLP-2 secretion potentially acting as the mechanism mediating the rescue effect. Thus, allulose can potentially enhance disrupted gut mucosal barriers as it can more extensively modulate the intestinal transcriptome relative to glucose and fructose considered risk factors of metabolic disease.more » « less
- 
            Abstract Background Lactobacillus rhamnosus GG (LGG) is the most widely used probiotic, but the mechanisms underlying its beneficial effects remain unresolved. Previous studies typically inoculated LGG in hosts with established gut microbiota, limiting the understanding of specific impacts of LGG on host due to numerous interactions among LGG, commensal microbes, and the host. There has been a scarcity of studies that used gnotobiotic animals to elucidate LGG-host interaction, in particular for gaining specific insights about how it modifies the metabolome. To evaluate whether LGG affects the metabolite output of pathobionts, we inoculated with LGG gnotobiotic mice containing Propionibacterium acnes, Turicibacter sanguinis, and Staphylococcus aureus (PTS). Results 16S rRNA sequencing of fecal samples by Ion Torrent and MinION platforms showed colonization of germ-free mice by PTS or by PTS plus LGG (LTS). Although the body weights and feeding rates of mice remained similar between PTS and LTS groups, co-associating LGG with PTS led to a pronounced reduction in abundance of P. acnes in the gut. Addition of LGG or its secretome inhibited P. acnes growth in culture. After optimizing procedures for fecal metabolite extraction and metabolomic liquid chromatography-mass spectrometry analysis, unsupervised and supervised multivariate analyses revealed a distinct separation among fecal metabolites of PTS, LTS, and germ-free groups. Variables-important-in-projection scores showed that LGG colonization robustly diminished guanine, ornitihine, and sorbitol while significantly elevating acetylated amino acids, ribitol, indolelactic acid, and histamine. In addition, carnitine, betaine, and glutamate increased while thymidine, quinic acid and biotin were reduced in both PTS and LTS groups. Furthermore, LGG association reduced intestinal mucosal expression levels of inflammatory cytokines, such as IL-1α, IL-1β and TNF-α. Conclusions LGG co-association had a negative impact on colonization of P. acnes , and markedly altered the metabolic output and inflammatory response elicited by pathobionts.more » « less
- 
            Farrugia, G (Ed.)Background: Symptoms following fructose ingestion, or fructose intolerance, are common in patients with functional gastrointestinal disorders (FGID) and are generally attributed to intestinal malabsorption. The relationships between absorption, symptoms, and intestinal gas production following fructose ingestion were studied in patients with FGID. Methods: Thirty FGID patients ingested a single dose of fructose 35 g or water in a randomized, double-blind, crossover study. Blood and breath gas samples were collected, and gastrointestinal symptoms rated. Plasma fructose metabolites and short-chain fatty acids were quantified by targeted liquid chromatography-tandem mass spectrometry. Patients were classified as fructose intolerant or tolerant based on symptoms following fructose ingestion. Key results: The median (IQR) areas under the curve of fructose plasma concentrations within the first 2 h (AUC0-2 h ) after fructose ingestion were similar for patients with and without fructose intolerance (578 (70) µM·h vs. 564 (240) µM·h, respectively, p = 0.39), as well as for the main fructose metabolites. There were no statistically significant correlations between the AUC0-2 h of fructose or its metabolites concentrations and the AUCs of symptoms, breath hydrogen, and breath methane. However, the AUCs of symptoms correlated significantly and positively with the AUC0-2 h of hydrogen and methane breath concentrations (r = 0.73, r = 0.62, respectively), and the AUCs of hydrogen and methane concentrations were greater in the fructose-intolerant than in the fructose-tolerant patients after fructose ingestion (p ≤ 0.02). Conclusions & inferences: Fructose intolerance in FGID is not related to post-ingestion plasma concentrations of fructose and its metabolites. Factors other than malabsorption, such as altered gut microbiota or sensory function, may be important mechanisms.more » « less
- 
            Centering microbes in the emerging role of integrative biology in understanding environmental changenull (Ed.)Synopsis We argue that the current environmental changes stressing the Earth’s biological systems urgently require study from an integrated perspective to reveal unexpected, cross-scale interactions, particularly between microbes and macroscale phenomena. Such interactions are the basis of a mechanistic understanding of the important connections between deforestation and emerging infectious disease, feedback between ecosystem disturbance and the gut microbiome, and the cross-scale effects of environmental pollutants. These kinds of questions can be answered with existing techniques and data, but a concerted effort is necessary to better coordinate studies and data sets from different disciplines to fully leverage their potential.more » « less
- 
            ABSTRACT Background High intakes of fructose are associated with metabolic diseases, including hypertriglyceridemia and intestinal tumor growth. Although small intestinal epithelia consist of many different cell types, express lipogenic genes, and convert dietary fructose to fatty acids, there is no information on the identity of the cell type(s) mediating this conversion and on the effects of fructose on lipogenic gene expression. Objectives We hypothesized that fructose regulates the intestinal expression of genes involved in lipid and apolipoprotein synthesis, that regulation depends on the fructose transporter solute carrier family 2 member a5 [Slc2a5 (glucose transporter 5)] and on ketohexokinase (Khk), and that regulation occurs only in enterocytes. Methods We compared lipogenic gene expression among different organs from wild-type adult male C57BL mice consuming a standard vivarium nonpurified diet. We then gavaged twice daily for 2.5 d fructose or glucose solutions (15%, 0.3 mL per mouse) into wild-type, Slc2a5-knockout (KO), and Khk-KO mice with free access to the nonpurified diet and determined expression of representative lipogenic genes. Finally, from mice fed the nonpurified diet, we made organoids highly enriched in enterocyte, goblet, Paneth, or stem cells and then incubated them overnight in 10 mM fructose or glucose. Results Most lipogenic genes were significantly expressed in the intestine relative to the kidney, liver, lung, and skeletal muscle. In vivo expression of Srebf1, Acaca, Fasn, Scd1, Dgat1, Gk, Apoa4, and Apob mRNA and of Scd1 protein increased (P < 0.05) by 3- to 20-fold in wild-type, but not in Slc2a5-KO and Khk-KO, mice gavaged with fructose. In vitro, Slc2a5- and Khk-dependent, fructose-induced increases, which ranged from 1.5- to 4-fold (P < 0.05), in mRNA concentrations of all these genes were observed only in organoids enriched in enterocytes. Conclusions Fructose specifically stimulates expression of mouse small intestinal genes for lipid and apolipoprotein synthesis. Secretory and stem cells seem incapable of transport- and metabolism-dependent lipogenesis, occurring only in absorptive enterocytes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
