Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Budd et al. challenge the identity of neural traces reported for the Cambrian lobopodian Cardiodictyon catenulum. Their argumentation is unsupported, as are objections with reference to living Onychophora that misinterpret established genomic, genetic, developmental, and neuroanatomical evidence. Instead, phylogenetic data corroborate the finding that the ancestral panarthropod head and brain is unsegmented, as in C. catenulum.more » « less
-
For more than a century, the origin and evolution of the arthropod head and brain have eluded a unifying rationale reconciling divergent morphologies and phylogenetic relationships. Here, clarification is provided by the fossilized nervous system of the lower Cambrian lobopodian Cardiodictyon catenulum, which reveals an unsegmented head and brain comprising three cephalic domains, distinct from the metameric ventral nervous system serving its appendicular trunk. Each domain aligns with one of three components of the foregut and with a pair of head appendages.Morphological correspondences with stemgroup arthropods and alignments of homologous gene expression patterns with those of extant panarthropods demonstrate that cephalic domains of C. catenulum predate the evolution of the euarthropod head yet correspond to neuromeres defining brains of living chelicerates and mandibulates.more » « less
-
Fossils provide insights into how organs may have diversified over geological time.1 However, diversification already accomplished early in evolution can obscure ancestral events leading to it. For example, already by the mid-Cambrian period, euarthropods had condensed brains typifying modern mandibulate lineages.2 However, the demonstration that extant euarthropods and chordates share orthologous developmental control genes defining the segmental fore-, mid-, and hindbrain suggests that those character states were present even before the onset of the Cambrian.3 Fossilized nervous systems of stem Euarthropodamight, therefore, be expected to reveal ancestral segmental organization, from which divergent arrangements emerged. Here, we demonstrate unsurpassed preservation of cerebral tissue in Kaili leanchoiliids revealing near-identical arrangements of bilaterally symmetric ganglia identified as the proto-, deuto-, and tritocerebra disposed behind an asegmental frontal domain, the prosocerebrum, from which paired nerves extend to labral ganglia flanking the stomodeum. This organization corresponds to labral connections hallmarking extant euarthropod clades4 and to predicted transformations of presegmental ganglia serving raptorial preocular appendages of Radiodonta.5 Trace nervous system in the gilled lobopodian Kerygmachela kierkegaardi6 suggests an even deeper prosocerebral ancestry. An asegmental prosocerebrum resolves its location relative to the midline asegmental sclerite of the radiodontan head, which persists in stem Euarthropoda.7 Here, data from two Kaili Leanchoilia, with additional reference to Alalcomenaeus,8,9 demonstrate that Cambrian stem Euarthropoda confirm genomic and developmental studies10–15 claiming that the most frontal domain of the euarthropod brain is a unique evolutionary module distinct from, and ancestral to, the fore-, mid-, and hindbrain.more » « less
-
Many biological systems across scales of size and complexity exhibit a time-varying complex network structure that emerges and self-organizes as a result of interactions with the environment. Network interactions optimize some intrinsic cost functions that are unknown and involve for example energy efficiency, robustness, resilience, and frailty. A wide range of networks exist in biology, from gene regulatory networks important for organismal development, protein interaction networks that govern physiology and metabolism, and neural networks that store and convey information to networks of microbes that form microbiomes within hosts, animal contact networks that underlie social systems, and networks of populations on the landscape connected by migration. Increasing availability of extensive (big) data is amplifying our ability to quantify biological networks. Similarly, theoretical methods that describe network structure and dynamics are being developed. Beyond static networks representing snapshots of biological systems, collections of longitudinal data series can help either at defining and characterizing network dynamics over time or analyzing the dynamics constrained to networked architectures. Moreover, due to interactions with the environment and other biological systems, a biological network may not be fully observable. Also, subnetworks may emerge and disappear as a result of the need for the biological system to cope with for example invaders or new information flows. The confluence of these developments renders tractable the question of how the structure of biological networks predicts and controls network dynamics. In particular, there may be structural features that result in homeostatic networks with specific higher-order statistics (e.g., multifractal spectrum), which maintain stability over time through robustness and/or resilience to perturbation. Alternative, plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in structure. Here, we explore the opportunity for discovering universal laws connecting the structure of biological networks with their function, positioning them on the spectrum of time-evolving network structure, that is, dynamics of networks, from highly stable to exquisitely sensitive to perturbation. If such general laws exist, they could transform our ability to predict the response of biological systems to perturbations—an increasingly urgent priority in the face of anthropogenic changes to the environment that affect life across the gamut of organizational scales.more » « less
-
In one species of shore crab (Brachyura, Varunidae), a center that supports long-term visual habituation and that matches the reniform body's morphology has been claimed as a homolog of the insect mushroom body despite lacking traits that define it as such. The discovery in a related species of shore crab of a mushroom body possessing those defining traits renders that interpretation unsound. Two phenotypically distinct, coexisting centers cannot both be homologs of the insect mushroom body. The present commentary outlines the history of research leading to misidentification of the reniform body as a mushroom body. One conclusion is that if both centers support learning and memory, this would be viewed as a novel and fascinating attribute of the pancrustacean brainmore » « less
-
Just one superorder of insects is known to possess a neuronal network that mediates extremely rapid reactions in flight in response to changes in optic flow. Research on the identity and functional organization of this network has over the course of almost half a century focused exclusively on the order Diptera, a member of the approximately 300-million-year-old clade Holometabola defined by its mode of development. However, it has been broadly claimed that the pivotal neuropil containing the network, the lobula plate, originated in the Cambrian before the divergence of Hexapoda and Crustacea from a mandibulate ancestor. This essay defines the traits that designate the lobula plate and argues against a homologue in Crustacea. It proposes that the origin of the lobula plate is relatively recent and may relate to the origin of flightmore » « less
-
A prevailing opinion since 1926 has been that optic lobe organization in malacostracan crustaceans and insects reflects a corresponding organization in their common ancestor. Support for this refers to malacostracans and insects both possessing three, in some instances four, nested retinotopic neuropils beneath their compound eyes. Historically, the rationale for claiming homology of malacostracan and insect optic lobes referred to those commonalities, and to comparable arrangements of neurons. However, recent molecular phylogenetics has firmly established that Malacostraca belong to Multicrustacea, whereas Hexapoda and its related taxa Cephalocarida, Branchiopoda, and Remipedia belong to the phyletically distinct clade Allotriocarida. Insects are more closely related to remipedes than are either to malacostracans. Reconciling neuroanatomy with molecular phylogenies has been complicated by studies showing that the midbrains of remipedes share many attributes with the midbrains of malacostracans. Here we review the organization of the optic lobes in Malacostraca and Insecta to inquire which of their characters correspond genealogically across Pancrustacea and which characters do not. We demonstrate that neuroanatomical characters pertaining to the third optic lobe neuropil, called the lobula complex, may indicate convergent evolution. Distinctions of the malacostracan and insect lobula complexes are sufficient to align neuroanatomical descriptions of the pancrustacean optic lobes within the constraints of molecular-based phylogenies.more » « less
-
Neural organization of mushroom bodies is largely consistent across insects, whereas the ancestral ground pattern diverges broadly across crustacean lineages resulting in successive loss of columns and the acquisition of domed centers retaining ancestral Hebbian-like networks and aminergic connections. We demonstrate here a major departure from this evolutionary trend in Brachyura, the most recent malacostracan lineage. In the shore crab Hemigrapsus nudus, instead of occupying the rostral surface of the lateral protocerebrum, mushroom body calyces are buried deep within it with their columns extending outwards to an expansive system of gyri on the brain’s surface. The organization amongst mushroom body neurons reaches extreme elaboration throughout its constituent neuropils. The calyces, columns, and especially the gyri show DC0 immunoreactivity, an indicator of extensive circuits involved in learning and memory.more » « less
-
Corresponding attributes of neural development and functionsuggest arthropod and vertebrate brains may have an evolutionarily conserved organization. However, the underlying mechanisms have remained elusive. Here, we identify a gene regulatory and character identity network defining the deutocerebral– tritocerebral boundary (DTB) in Drosophila. This network comprises genes homologous to those directing midbrain-hindbrainboundary (MHB) formation in vertebrates and their closest chordate relatives.Genetic tracing reveals that the embryonic DTB gives rise to adult midbrain circuits that in flies control auditory and vestibular information processing and motor coordination, as do MHB-derived circuits in vertebrates. DTB-specific gene expression and function are directed by cis-regulatory elements of developmental control genes that include homologs of mammalian Zinc finger of the cerebellum and Purkinje cell protein 4. Drosophila DTB-specific cis-regulatory elements correspond to regulatory sequences of human ENGRAILED-2, PAX-2, and DACHSHUND-1 that direct MHB-specific expression in the embryonic mouse brain. We show that cis-regulatory elements and the gene networks they regulate direct the formation and function of midbrain circuits for balance and motor coordination in insects and mammals. Regulatory mechanisms mediating the genetic specification of cephalic neural circuits in arthropods correspond to those in chordates, thereby implying their origin before the divergence of deuterostomes and ecdysozoans.more » « less
-
Descriptions of crustacean brains have focused mainly on three highly derived lineages of malacostracans: the reptantian infraorders represented by spiny lobsters, lobsters, and crayfish. Those descriptions advocate the view that dome- or cap-like neuropils, referred to as ‘hemiellipsoid bodies,’ are the ground pattern organization of centers that are comparable to insect mushroom bodies in processing olfactory information. Here we challenge the doctrine that hemiellipsoid bodies are a derived trait of crustaceans, whereas mushroom bodies are a derived trait of hexapods. We demonstrate that mushroom bodies typify lineages that arose before Reptantia and exist in Reptantia thereby indicating that the mushroom body, not the hemiellipsoid body, provides the ground pattern for both crustaceans and hexapods. We show that evolved variations of the mushroom body ground pattern are, in some lineages, defined by extreme diminution or loss and, in others, by the incorporation of mushroom body circuits into lobeless centers. Such transformations are ascribed to modifications of the columnar organization of mushroom body lobes that, as shown in Drosophila and other hexapods, contain networks essential for learning and memory.more » « less
An official website of the United States government

Full Text Available