Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Radial–axial transport coordination enhances sugar translocation in the phloem vasculature of plantsAbstract Understanding mass transport of photosynthates in the phloem of plants is necessary for predicting plant carbon allocation, productivity, and responses to water and thermal stress. Several hypotheses about optimization of phloem structure and function and limitations of phloem transport under drought have been proposed and tested with models and anatomical data. However, the true impact of radial water exchange of phloem conduits with their surroundings on mass transport of photosynthates has not been addressed. Here, the physics of the Munch mechanism of sugar transport is re-evaluated to include local variations in viscosity resulting from the radial water exchange in two dimensions (axial and radial) using transient flow simulations. Model results show an increase in radial water exchange due to a decrease in sap viscosity leading to increased sugar front speed and axial mass transport across a wide range of phloem conduit lengths. This increase is around 40% for active loaders (e.g. crops) and around 20% for passive loaders (e.g. trees). Thus, sugar transport operates more efficiently than predicted by previous models that ignore these two effects. A faster front speed leads to higher phloem resiliency under drought because more sugar can be transported with a smaller pressure gradient.more » « less
-
Epron, Daniel (Ed.)Abstract Considering the temporal responses of carbon isotope discrimination (Δ13C) to local water availability in the spatial analysis of Δ13C is essential for evaluating the contribution of environmental and genetic facets of plant Δ13C. Using tree-ring Δ13C from years with contrasting water availability at 76 locations across the natural range of loblolly pine, we decomposed site-level Δ13C signals to maximum Δ13C in well-watered conditions (Δ13Cmax) and isotopic drought sensitivity (m) as a change in Δ13C per unit change of Palmer’s Drought Severity Index (PDSI). Site water status, especially the tree lifetime average PDSI, was the primary factor affecting Δ13Cmax. The strong spatial correlation exhibited by m was related to both genetic and environmental factors. The long-term average water availability during the period relevant to trees as indicated by lifetime average PDSI correlated with Δ13Cmax, suggesting acclimation in tree gas-exchange traits, independent of incident water availability. The positive correlation between lifetime average PDSI and m indicated that loblolly pines were more sensitive to drought at mesic than xeric sites. The m was found to relate to a plant’s stomatal control and may be employed as a genetic indicator of efficient water use strategies. Partitioning Δ13C to Δ13Cmax and m provided a new angle for understanding sources of variation in plant Δ13C, with several fundamental and applied implications.more » « less
An official website of the United States government
