skip to main content

Search for: All records

Award ID contains: 1754893

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding mass transport of photosynthates in the phloem of plants is necessary for predicting plant carbon allocation, productivity, and responses to water and thermal stress. Several hypotheses about optimization of phloem structure and function and limitations of phloem transport under drought have been proposed and tested with models and anatomical data. However, the true impact of radial water exchange of phloem conduits with their surroundings on mass transport of photosynthates has not been addressed. Here, the physics of the Munch mechanism of sugar transport is re-evaluated to include local variations in viscosity resulting from the radial water exchange in two dimensions (axial and radial) using transient flow simulations. Model results show an increase in radial water exchange due to a decrease in sap viscosity leading to increased sugar front speed and axial mass transport across a wide range of phloem conduit lengths. This increase is around 40% for active loaders (e.g. crops) and around 20% for passive loaders (e.g. trees). Thus, sugar transport operates more efficiently than predicted by previous models that ignore these two effects. A faster front speed leads to higher phloem resiliency under drought because more sugar can be transported with a smaller pressure gradient.

    more » « less
  2. Abstract

    Water inside plants forms a continuous chain from water in soils to the water evaporating from leaf surfaces. Failures in this chain result in reduced transpiration and photosynthesis and are caused by soil drying and/or cavitation‐induced xylem embolism. Xylem embolism and plant hydraulic failure share several analogies to ‘catastrophe theory’ in dynamical systems. These catastrophes are often represented in the physiological and ecological literature as tipping points when control variables exogenous (e.g., soil water potential) or endogenous (e.g., leaf water potential) to the plant are allowed to vary on time scales much longer than time scales associated with cavitation events. Here, plant hydraulics viewed from the perspective of catastrophes at multiple spatial scales is considered with attention to bubble expansion within a xylem conduit, organ‐scale vulnerability to embolism, and whole‐plant biomass as a proxy for transpiration and hydraulic function. The hydraulic safety‐efficiency tradeoff, hydraulic segmentation and maximum plant transpiration are examined using this framework. Underlying mechanisms for hydraulic failure at fine scales such as pit membranes and cell‐wall mechanics, intermediate scales such as xylem network properties and at larger scales such as soil–tree hydraulic pathways are discussed. Understudied areas in plant hydraulics are also flagged where progress is urgently needed.

    more » « less
  3. Abstract

    The coordination of plant leaf water potential (ΨL) regulation and xylem vulnerability to embolism is fundamental for understanding the tradeoffs between carbon uptake and risk of hydraulic damage. There is a general consensus that trees with vulnerable xylem more conservatively regulate ΨLthan plants with resistant xylem. We evaluated if this paradigm applied to three important eastern US temperate tree species,Quercus albaL.,Acer saccharumMarsh. andLiriodendron tulipiferaL., by synthesizing 1600 ΨLobservations, 122 xylem embolism curves and xylem anatomical measurements across 10 forests spanning pronounced hydroclimatological gradients and ages. We found that, unexpectedly, the species with the most vulnerable xylem (Q. alba) regulated ΨLless strictly than the other species. This relationship was found across all sites, such that coordination among traits was largely unaffected by climate and stand age.Quercusspecies are perceived to be among the most drought tolerant temperate US forest species; however, our results suggest their relatively loose ΨLregulation in response to hydrologic stress occurs with a substantial hydraulic cost that may expose them to novel risks in a more drought‐prone future.

    more » « less
  4. Abstract

    Floating treatment wetlands are new ecological infrastructures for stormwater treatment. Despite a recent proliferation in their usage, their contaminant removal efficiencyecontinues to draw research attention. Here, theefrom idealized FTWs is numerically computed across a wide range of flow and geometric conditions while accommodating joint contributions of advection, turbulent dispersion, and vegetation removal. The emerging mathematical structure describingebears resemblance to a simplified plug flow model and supports an empirical shallow-basin model from long-term field measurements. The present model indicates thateremains significantly influenced by a Dämkohler number that quantifies the effects of both vegetation and flow properties. The impacts oneof the underflow region and contaminant blockage on the removal mechanisms are also investigated.

    more » « less
  5. Abstract

    The terrestrial net ecosystem productivity (NEP) has increased during the past three decades, but the mechanisms responsible are still unclear. We analyzed 17 years (2001–2017) of eddy‐covariance measurements of NEP, evapotranspiration (ET) and light and water use efficiency from a boreal coniferous forest in Southern Finland for trends and inter‐annual variability (IAV). The forest was a mean annual carbon sink (252 [42] gC ), and NEP increased at rate +6.4–7.0 gC (or ca. +2.5% ) during the period. This was attributed to the increasing gross‐primary productivity GPP and occurred without detectable change in ET. The start of annual carbon uptake period was advanced by 0.7 d , and increase in GPP and NEP outside the main growing season contributed ca. one‐third and one‐fourth of the annual trend, respectively. Meteorological factors were responsible for the IAV of fluxes but did not explain the long‐term trends. The growing season GPP trend was strongest in ample light during the peak growing season. Using a multi‐layer ecosystem model, we showed that direct fertilization effect diminishes when moving from leaf to ecosystem, and only 30–40% of the observed ecosystem GPP increase could be attributed to . The increasing trend in leaf‐area index (LAI), stimulated by forest thinning in 2002, was the main driver of the enhanced GPP and NEP of the mid‐rotation managed forest. It also compensated for the decrease of mean leaf stomatal conductance with increasing and LAI, explaining the apparent proportionality between observed GPP and trends. The results emphasize that attributing trends to their physical and physiological drivers is challenged by strong IAV, and uncertainty of LAI and species composition changes due to the dynamic flux footprint. The results enlighten the underlying mechanisms responsible for the increasing terrestrial carbon uptake in the boreal zone.

    more » « less
  6. Abstract

    How large turbulent eddies influence non‐closure of the surface energy balance is an active research topic that cannot be uncovered by the mean continuity equation in isolation. It is demonstrated here that asymmetric turbulent flux transport of heat and water vapor by sweeps and ejections of large eddies under unstable atmospheric stability conditions reduce fluxes. Such asymmetry causes positive gradients in the third‐order moments in the turbulent flux budget equations, primarily attributed to substantially reduced flux contributions by sweeps and sustained large flux contributions by ejections. Small‐scale surface heterogeneity in heating generates ejecting eddies with larger air temperature variance than sweeping eddies, causing asymmetric flux transport in the atmospheric surface layer. Changes in asymmetry with increasing instability are congruent with observed increases in the surface energy balance non‐closure. To assess the contributions of asymmetric flux transport by large eddies to the non‐closure requires two eddy covariance systems on the tower to measure the gradients of the turbulent heat flux and other third‐order moments.

    more » « less
  7. Summary

    Wood anatomical traits shape a xylem segment’s hydraulic efficiency and resistance to embolism spread due to declining water potential. It has been known for decades that variations in conduit connectivity play a role in altering xylem hydraulics. However, evaluating the precise effect of conduit connectivity has been elusive. The objective here is to establish an analytical linkage between conduit connectivity and grouping and tissue‐scale hydraulics.

    It is hypothesized that an increase in conduit connectivity brings improved resistance to embolism spread due to increased hydraulic pathway redundancy. However, an increase in conduit connectivity could also reduce resistance due to increased speed of embolism spread with respect to pressure. We elaborate on this trade‐off using graph theory, percolation theory and computational modeling of xylem. The results are validated using anatomical measurements ofAcerbranch xylem.

    Considering only species with vessels, increases in connectivity improve resistance to embolism spread without negatively affecting hydraulic conductivity. The often measured grouping index fails to capture the totality of the effect of conduit connectivity on xylem hydraulics.

    Variations in xylem network characteristics, such as conduit connectivity, might explain why hypothesized trends among woody species, such as the ‘safety‐efficiency’ trade‐off hypothesis, are weaker than expected.

    more » « less
  8. Abstract

    The sensitivity of soil carbon dynamics to climate change is a major uncertainty in carbon cycle models. Of particular interest is the response of soil biogeochemical cycles to variability in hydroclimatic states and the related quantification of soil memory. Toward this goal, the power spectra of soil hydrologic and biogeochemical states were analyzed using measurements of soil temperature, moisture, oxygen, and carbon dioxide at two sites. Power spectra indicated multiscale power law scaling across subhourly to annual timescales. Precipitation fluctuations were most strongly expressed in the soil biogeochemical signals at monthly to annual timescales. Soil moisture and temperature fluctuations were comparable in strength at one site, while temperature was dominant at the other. The effect of soil hydrologic, thermal, and biogeochemical processes on gas concentration variability was evidenced by low spectral entropy relative to the white noise character of precipitation. A full mass balance model was unable to capture high‐frequency soil temperature influence, indicating a gap in commonly used model assumptions. A linearized model was shown to capture the main features of the observed and modeled gas concentration spectra and demonstrated how the means and variances of soil moisture and temperature interact to produce the gas concentration spectra. Breakpoints in the spectra corresponded to the mean rate of gas efflux, providing a first‐order estimate of the soil biogeochemical integral timescale (∼1 min). These methods can be used to identify biogeochemical system dynamics to develop robust, process‐based soil biogeochemistry models that capture variability in addition to long‐term mean values.

    more » « less
  9. Abstract

    Considering the temporal responses of carbon isotope discrimination (Δ13C) to local water availability in the spatial analysis of Δ13C is essential for evaluating the contribution of environmental and genetic facets of plant Δ13C. Using tree-ring Δ13C from years with contrasting water availability at 76 locations across the natural range of loblolly pine, we decomposed site-level Δ13C signals to maximum Δ13C in well-watered conditions (Δ13Cmax) and isotopic drought sensitivity (m) as a change in Δ13C per unit change of Palmer’s Drought Severity Index (PDSI). Site water status, especially the tree lifetime average PDSI, was the primary factor affecting Δ13Cmax. The strong spatial correlation exhibited by m was related to both genetic and environmental factors. The long-term average water availability during the period relevant to trees as indicated by lifetime average PDSI correlated with Δ13Cmax, suggesting acclimation in tree gas-exchange traits, independent of incident water availability. The positive correlation between lifetime average PDSI and m indicated that loblolly pines were more sensitive to drought at mesic than xeric sites. The m was found to relate to a plant’s stomatal control and may be employed as a genetic indicator of efficient water use strategies. Partitioning Δ13C to Δ13Cmax and m provided a new angle for understanding sources of variation in plant Δ13C, with several fundamental and applied implications.

    more » « less
  10. Abstract

    Turbulent mixing of scalars within canopies is investigated using a flume experiment with canopy‐like rods of heighthmounted to the channel bed. The data comprised a time sequence of high‐resolution images of a dye recorded in a plane parallel to the bed atz/h= 0.2. Image processing shows that von Kármán wakes shed by canopy drag and downward turbulent transport from upper canopy layers impose distinct scaling regimes on the scalar spectrum. Measures from information theory are then used to explore the dominant directionality of the interaction between small and large scales underlying these two spectral regimes, showing that the arrival of sweeps from aloft establishes an inertial‐range spectrum with forward “information” cascade. In contrast, wake growth with downstream distance leads to persistent upscale transfer (inverse cascade) of scalar variance, which hints at their nondiffusive character and the significance of the stem diameter as an active length scale in canopy turbulence.

    more » « less