skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1755245

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis Temperate winters can impose severe conditions on songbirds that threaten survival, including shorter days and often lower temperatures and food availability. One well-studied mechanism by which songbirds cope with such conditions is seasonal acclimatization of thermal metabolic traits, with strong evidence for both preparative and responsive changes in thermogenic capacity (i.e., the ability to generate heat) to low winter temperatures. However, a bird’s ability to cope with seasonal extremes or unpredictable events is likely dependent on a combination of behavioral and physiological traits that function to maintain allostatic balance. The ability to cope with reduced food availability may be an important component of organismal response to temperate winters in songbirds. Here, we compare responses to experimentally reduced food availability at different times of year in captive red crossbills (Loxia curvirostra) and pine siskins (Spinus pinus)—two species that cope with variable food resources and live in cold places—to investigate seasonal changes in the organismal response to food availability. Further, red crossbills are known to use social information to improve responses to reduced food availability, so we also examine whether the use of social information in this context varies seasonally in this species. We find that pine siskins and red crossbills lose less body mass during time-restricted feedings in late winter compared to summer, and that red crossbills further benefit from social information gathered from observing other food-restricted red crossbills in both seasons. Observed changes in body mass were only partially explained by seasonal differences in food intake. Our results demonstrate seasonal acclimation to food stress and social information use across seasons in a controlled captive environment and highlight the importance of considering diverse physiological systems (e.g., thermogenic, metabolic, digestive, etc.) to understand organismal responses to environmental challenges. 
    more » « less
  2. Abstract Many animals rely on photoperiodic and non-photoperiodic environmental cues to gather information and appropriately time life-history stages across the annual cycle, such as reproduction, molt, and migration. Here, we experimentally demonstrate that the reproductive physiology, but not migratory behavior, of captive Pine Siskins (Spinus pinus) responds to both food and social cues during the spring migratory-breeding period. Pine Siskins are a nomadic finch with a highly flexible breeding schedule and, in the spring, free-living Pine Siskins can wander large geographic areas and opportunistically breed. To understand the importance of non-photoperiodic cues to the migratory-breeding transition, we maintained individually housed birds on either a standard or enriched diet in the presence of group-housed heterospecifics or conspecifics experiencing either the standard or enriched diet type. We measured body condition and reproductive development of all Pine Siskins and, among individually housed Pine Siskins, quantified nocturnal migratory restlessness. In group-housed birds, the enriched diet caused increases in body condition and, among females, promoted reproductive development. Among individually housed birds, female reproductive development differed between treatment groups, whereas male reproductive development did not. Specifically, individually housed females showed greater reproductive development when presented with conspecifics compared to heterospecifics. The highest rate of female reproductive development, however, was observed among individually housed females provided the enriched diet and maintained with group-housed conspecifics on an enriched diet. Changes in nocturnal migratory restlessness did not vary by treatment group or sex. By manipulating both the physical and social environment, this study demonstrates how multiple environmental cues can affect the timing of transitions between life-history stages with differential responses between sexes and between migratory and reproductive systems. 
    more » « less
  3. Abstract Many organisms use environmental cues to time events in their annual cycle, such as reproduction and migration, with the appropriate timing of such events impacting survival and reproduction. As the climate changes, evolved mechanisms of cue use may facilitate or limit the capacity of organisms to adjust phenology accordingly, and organisms often integrate multiple cues to fine-tune the timing of annual events. Yet, our understanding of how suites of cues are integrated to generate observed patterns of seasonal timing remains nascent. We present an overarching framework to describe variation in the process of cue integration in the context of seasonal timing. This framework incorporates both cue dependency and cue interaction. We then summarize how existing empirical findings across a range of vertebrate species and life cycle events fit into this framework. Finally, we use a theoretical model to explore how variation in modes of cue integration may impact the ability of organisms to adjust phenology adaptively in the face of climate change. Such a theoretical approach can facilitate the exploration of complex scenarios that present challenges to study in vivo but capture important complexity of the natural world. 
    more » « less
  4. Free, publicly-accessible full text available March 1, 2026
  5. Our understanding of state-dependent behaviour is reliant on identifying physiological indicators of condition. Telomeres are of growing interest for understanding behaviour as they capture differences in biological state and residual lifespan. To understand the significance of variable telomere lengths for behaviour and test two hypotheses describing the relationship between telomeres and behaviour (i.e. the causation and the selective adoption hypotheses), we assessed if telomere lengths are longitudinally repeatable traits related to spring migratory behaviour in captive pine siskins ( Spinus pinus ). Pine siskins are nomadic songbirds that exhibit highly flexible, facultative migrations, including a period of spring nomadism. Captive individuals exhibit extensive variation in spring migratory restlessness and are an excellent system for mechanistic studies of migratory behaviour. Telomere lengths were found to be significantly repeatable ( R = 0.51) over four months, and shorter pre-migratory telomeres were associated with earlier and more intense expression of spring nocturnal migratory restlessness. Telomere dynamics did not vary with migratory behaviour. Our results describe the relationship between telomere length and migratory behaviour and provide support for the selective adoption hypothesis. More broadly, we provide a novel perspective on the significance of variable telomere lengths for animal behaviour and the timing of annual cycle events. 
    more » « less
  6. The final stage of migration, when animals terminate migratory movements and transition to a more sedentary state, remains the least understood phase of migration. Whereas migrants that return to the same locations each year may use mechanisms associated with locating a specific destination, migrants with low site fidelity, such as nomadic migrants, may rely on local environmental cues to determine when to cease migratory movements. Using an experiment with captive birds, we tested whether the presence of a conspecific influences the termination of migration, indicated by changes in behaviour and physiology, in a nomadic migrant (the pine siskin, Spinus pinus ). We paired migratory birds with a non-migratory individual or left migratory and non-migratory individuals unpaired. Migratory paired birds had a significant decline in nocturnal activity immediately after pairing and activity levels remained lower two weeks later, with significant declines in energetic reserves and flight muscle size also observed. By contrast, migratory unpaired birds maintained high levels of activity and energetic reserves. These results provide evidence for a role of the social environment in migratory termination decisions. Social cues may be particularly useful in nomadic migrants, such as pine siskins, to facilitate settling in high quality, but unfamiliar, habitats. 
    more » « less
  7. null (Ed.)