skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1755313

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The western boundary current system off southeastern Brazil is composed of the poleward-flowing Brazil Current (BC) in the upper 300 m and the equatorward flowing Intermediate Western Boundary Current (IWBC) underneath it, forming a first-baroclinic mode structure in the mean. Between 22° and 23°S, the BC-IWBC jet develops recurrent cyclonic meanders that grow quasi-stationarily via baroclinic instability, though their triggering mechanisms are not yet well understood. Our study, thus, aims to propose a mechanism that could initiate the formation of these mesoscale eddies by adding the submesoscale component to the hydrodynamic scenario. To address this, we perform a regional 1/50° (∼2 km) resolution numerical simulation using CROCO (Coastal and Regional Ocean Community model). Our results indicate that incoming anticyclones reach the slope upstream of separation regions and generate barotropic instability that can trigger the meanders’ formation. Subsequently, this process generates submesoscale cyclones that contribute, along with baroclinic instability, to the meanders’ growth, resulting in a submesoscale-to-mesoscale inverse cascade. Last, as the mesoscale cyclones grow, they interact with the slope, generating inertially and symmetrically unstable anticyclonic submesoscale vortices and filaments. Significance Statement Off southeastern Brazil, the Brazil Current develops recurrent cyclonic meanders. Such meanders enhance the open-ocean primary productivity and are of societal importance as they are located in a region rich in oil and gas where oil-spill accidents have already happened. This study aims to explore the processes responsible for triggering the formation of these mesoscale eddies. We find that incoming anticyclones reach the slope upstream of separation regions and generate barotropic instabilities that eject submesoscale filaments and vortices and can trigger the meanders’ formation. Such results show that topographically generated submesoscale instabilities can play an important role in the dynamics of mesoscale meanders off southeastern Brazil. Moreover, this may indicate that resolving the submesoscale dynamics in operational numerical models may contribute to an increase in the predictability of the regional eddies. 
    more » « less