skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1755387

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract ObjectiveFish population surveys in north-temperate lakes are often conducted in the fall or spring when individuals are easy to capture with traditional fisheries techniques. Because some fishes are preparing to spawn or are spawning during these seasons, there is a critical need to better understand the potential influences of these surveys on decisions that are related to fish reproduction. MethodsWe tested whether spring mark–recapture surveys using fyke nets followed by electrofishing affect the reproductive behaviors of male Smallmouth Bass Micropterus dolomieu in a northern Wisconsin lake. Fyke netting, electrofishing, and whole-lake nest snorkeling surveys were conducted during 2001–2008, and Floy-tagged males were tracked across years to test whether capture in the fyke nets only or capture in the electrofishing survey influenced interyear nest site fidelity and reproductive timing. ResultThe mark–recapture surveys were conducted preceding the spawning of Smallmouth Bass, and returning males that were caught in the electrofishing survey nested ~50 m farther from their prior year's nest than both males that were captured only in fyke nets and males that were captured by neither method. Average interyear nest distances were ~200 m, and median interyear nest distances were ~90 m for males that were not captured in the electrofishing survey. Electrofishing and fyke netting did not influence the timing of reproduction. ConclusionSpring electrofishing surveys for Smallmouth Bass have the potential to displace breeding males from preferred nesting habitats. If displacement negatively influences fitness (i.e., age-0 survivorship to maturation), spring electrofishing surveys would not be recommended for assessing Smallmouth Bass populations. However, spring population surveys often occur soon after ice off, and surveys that are conducted at these colder temperatures are typically less stressful and less likely to result in mortality. Future research should test for fitness implications of reduced nest site fidelity following electrofishing in Smallmouth Bass while considering potential fitness trade-offs if surveys are moved later in the year. 
    more » « less
  2. The seasonal onset of reproduction is constrained in many systems by a need to first accumulate energetic reserves. Consequently, the observation that larger individuals reproduce earlier may be due to a negative relationship between size and mass‐specific basal metabolic rate that is shared across diverse taxa. However, an untested prediction of this hypothesis is that individuals should be metabolically efficient enough to escape energetic constraints above a certain size threshold. Seasonally reproducing species, such as temperate fishes, that must recover winter energy losses before reproduction and exhibit indeterminate growth are ideal models to test this prediction. We harness decade‐long behavioral data on parental male smallmouth bass,Micropterus dolomieu, to investigate contributions of energetic allometry to differences in reproductive timing. At the population level, peak seasonal reproductive timing (i.e. the median date on which eggs were found in nests each year) was negatively related to degree days – a measure of thermal energy experienced – before reproduction. At the individual level, degree days accumulated by males before reproduction was related to male size and condition in every year, but the impact of temperature on reproductive timing by the largest males was relaxed in most years. Additionally, we used our data to replicate the analyses of two previous studies ofM. dolomieupopulations and found virtually identical negative associations between male body size and degree days accumulated before reproduction. Our results suggest that in smallmouth bass the onset of seasonal reproduction is constrained by basal metabolic rate – as indicated by total length – and that large individuals can escape size‐associated energetic constraints. We reveal a more complicated relationship between size and reproductive timing than earlier studies, which may be relevant for many species. Knowledge of this relationship is critical to understanding how a changing climate will influence population dynamics of economically, ecologically and recreationally important species likeM. dolomieu. 
    more » « less