skip to main content


Search for: All records

Award ID contains: 1755522

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Leaf energy balance may influence plant performance and community composition. While biophysical theory can link leaf energy balance to many traits and environment variables, predicting leaf temperature and key driver traits with incomplete parameterizations remains challenging. Predicting thermal offsets (δ,Tleaf − Tairdifference) or thermal coupling strengths (β,Tleafvs.Tairslope) is challenging.

    We ask: (a) whether environmental gradients predict variation in energy balance traits (absorptance, leaf angle, stomatal distribution, maximum stomatal conductance, leaf area, leaf height); (b) whether commonly measured leaf functional traits (dry matter content, mass per area, nitrogen fraction, δ13C, height above ground) predict energy balance traits; and (c) how traits and environmental variables predictδandβamong species.

    We address these questions with diurnal measurements of 41 species co‐occurring along a 1,100 m elevation gradient spanning desert to alpine biomes. We show that (a) energy balance traits are only weakly associated with environmental gradients and (b) are not well predicted by common functional traits. We also show that (c)δandβcan be partially approximated using interactions among site environment and traits, with a much larger role for environment than traits. The heterogeneity in leaf temperature metrics and energy balance traits challenges larger‐scale predictive models of plant performance under environmental change.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  2. Abstract

    1. Although associative learning is widespread across animals, its ecological importance is difficult to assess because learning is rarely studied in the field, where informative cues are juxtaposed against complex backgrounds of uninformative noise.

    2. Ants rely heavily on chemical cues for foraging and engage in many ecologically important interactions with plants. Nevertheless, little is known about the role of associative learning of plant chemicals in ant foraging for carbohydrates.

    3. In a field setting, the present study investigated whether the distantly related ant speciesFormica podzolica(Formicinae subfamily) andTapinoma sessile(Dolichoderinae subfamily) exhibited associative learning of the chemical cues from two co‐occurring plant species that are taxonomically and chemically distinct (Asteraceae:Helianthella quinquenervisand Apiaceae:Ligusticum porteri).

    4. For two consecutive summers, ants were trained to forage from artificial sugar‐rich baits associated with the leaf chemicals from eitherH. quinquenervisorL. porterifor 24 h, after which a two‐choice test was deployed to assess whether ants would be more likely to select baits associated with the same (versus different) plant chemicals on which they had been trained.

    5. The present study demonstrates associative learning of chemicals from both plant species, and these effects were consistent between ant species and years; training increased bait occupancy from 42% on the untrained scent to 66% on the trained scent. These results indicate that associative odour‐learning may be widespread across ants and serve as an important mechanism mediating ant selection of resources.

     
    more » « less
  3. Outdoor recreation benefits local economies, environmental education, and public health and wellbeing, but it can also adversely affect local ecosystems. Human presence in natural areas alters feeding and reproductive behaviors, physiology, and population structure in many wildlife species, often resulting in cascading effects through entire ecological communities. As outdoor recreation gains popularity, existing trails are becoming overcrowded and new trails are being built to accommodate increasing use. Many recreation impact studies have investigated effects of the presence or absence of humans while few have investigated recreation effects on wildlife using a gradient of disturbance intensity. We used camera traps to quantify trail use by humans and mid- to large-sized mammals in an area of intense outdoor recreation–the Upper East River Valley, Colorado, USA. We selected five trails with different types and intensities of human use and deployed six cameras on each trail for five weeks during a COVID-enhanced 2020 summer tourism season. We used occupancy models to estimate detectability and habitat use of the three most common mammal species in the study area and determined which human activities affect the habitat use patterns of each species. Human activities affected each species differently. Mule deer (Odocoileus hemionus) tended to use areas with more vehicles, more predators, and greater distances from the trailhead, and they were more likely to be detected where there were more bikers. Coyotes (Canis latrans) and red foxes (Vulpes vulpes) were most likely to use areas where their prey species occurred, and foxes were more likely to be detected where the vegetation was shorter. Humans and their recreational activities differentially influence different species. More generally, these results reinforce that it is unlikely that a single management policy is suitable for all species and management should thus be tailored for each target species.

     
    more » « less
    Free, publicly-accessible full text available November 10, 2024
  4. Zhi-Yun (Ed.)
    Abstract Escape theory has been exceptionally successful in conceptualizing and accurately predicting effects of numerous factors that affect predation risk and explaining variation in flight initiation distance (FID; predator–prey distance when escape begins). Less explored is the relative orientation of an approaching predator, prey, and its eventual refuge. The relationship between an approaching threat and its refuge can be expressed as an angle we call the “interpath angle” or “Φ,” which describes the angle between the paths of predator and prey to the prey’s refuge and thus expresses the degree to which prey must run toward an approaching predator. In general, we might expect that prey would escape at greater distances if they must flee toward a predator to reach its burrow. The “race for life” model makes formal predictions about how Φ should affect FID. We evaluated the model by studying escape decisions in yellow-bellied marmots Marmota flaviventer, a species which flees to burrows. We found support for some of the model’s predictions, yet the relationship between Φ and FID was less clear. Marmots may not assess Φ in a continuous fashion; but we found that binning angle into 4 45° bins explained a similar amount of variation as models that analyzed angle continuously. Future studies of Φ, especially those that focus on how different species perceive relative orientation, will likely enhance our understanding of its importance in flight decisions. 
    more » « less
  5. Simmons, Leigh (Ed.)
    Abstract The increase of structural growth rates to compensate for a poor initial body condition, defined as compensatory growth, may have physiological costs, but little is known about its effects on individual fitness in the wild. Yellow-bellied marmots (Marmota flaviventer) are obligate hibernators and depend on fat accumulation acquired during an approximately 4-month summer to survive overwinter. We investigated the costs of survival and longevity of rapid growth in a wild population of yellow-bellied marmots. We used trapping data collected from 2002 to 2014 to calculate individual relative seasonal growth and assess its effects on longevity and annual survival of juveniles, yearlings, and adults. Sites were distributed in two main areas, down-valley and up-valley; the latter has a higher elevation and is an overall harsher environment. We found that relative seasonal growth had no effect on individual longevity or on juvenile and adult annual survival. For yearlings, the effect of relative seasonal growth on survival depended on the location: yearlings with high relative seasonal growth had lower survival if located up-valley, and higher survival if located down-valley. In conclusion, juveniles and adults do not appear to have detectable costs of rapid growth, although there are costs to yearling survival depending on environmental conditions. Substantial structural growth occurs when marmots are yearlings and our results are likely driven by the high conflicting demands of somatic growth versus maintenance at this stage. Thus, the costs of rapid growth are age and site dependent and may be seen in the short term for species facing temporal constraints on growth. 
    more » « less