skip to main content


Search for: All records

Award ID contains: 1756093

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    While lee-wave generation has been argued to be a major sink for the 1-TW wind work on the ocean’s circulation, microstructure measurements in the Antarctic Circumpolar Currents find dissipation rates as much as an order of magnitude weaker than linear lee-wave generation predictions in bottom-intensified currents. Wave action conservation suggests that a substantial fraction of lee-wave radiation can be reabsorbed into bottom-intensified flows. Numerical simulations are conducted here to investigate generation, reabsorption, and dissipation of internal lee waves in a bottom-intensified, laterally confined jet that resembles a localized abyssal current over bottom topography. For the case of monochromatic topography with |kU0| ≈ 0.9N, wherekis the along-stream topographic wavenumber, |U0| is the near-bottom flow speed, andNis the buoyancy frequency; Reynolds-decomposed energy conservation is consistent with linear wave action conservation predictions that only 14% of lee-wave generation is dissipated, with the bulk of lee-wave energy flux reabsorbed by the bottom-intensified flow. Thus, water column reabsorption needs to be taken into account as a possible mechanism for reducing the lee-wave dissipative sink for balanced circulation.

     
    more » « less
  2. Microstructure measurements in Drake Passage and on the flanks of Kerguelen Plateau find turbulent dissipation rates ε on average factors of 2–3 smaller than linear lee-wave generation predictions, as well as a factor of 3 smaller than the predictions of a well-established parameterization based on finescale shear and strain. Here, the possibility that these discrepancies are a result of conservation of wave action E/ ωL= E/| kU| is explored. Conservation of wave action will transfer a fraction of the lee-wave radiation back to the mean flow if the waves encounter weakening currents U, where the intrinsic or Lagrangian frequency ωL= | kU| ↓ | f| and k the along-stream horizontal wavenumber, where kU ≡ k ⋅ V. The dissipative fraction of power that is lost to turbulence depends on the Doppler shift of the intrinsic frequency between generation and breaking, hence on the topographic height spectrum and bandwidth N/ f. The partition between dissipation and loss to the mean flow is quantified for typical topographic height spectral shapes and N/ f ratios found in the abyssal ocean under the assumption that blocking is local in wavenumber. Although some fraction of lee-wave generation is always dissipated in a rotating fluid, lee waves are not as large a sink for balanced energy or as large a source for turbulence as previously suggested. The dissipative fraction is 0.44–0.56 for topographic spectral slopes and buoyancy frequencies typical of the deep Southern Ocean, insensitive to flow speed U and topographic splitting. Lee waves are also an important mechanism for redistributing balanced energy within their generating bottom current.

     
    more » « less