skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1756173

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Human impacts on ecosystems are resulting in unprecedented rates of biodiversity loss worldwide. The loss of species results in the loss of the multiple roles that each species plays or functions (i.e., “ecosystem multifunctionality”) that it provides. A more comprehensive understanding of the effects of species on ecosystem multifunctionality is necessary for assessing the ecological impacts of species loss. We studied the effects of two dominant intertidal species, a primary producer (the seaweedNeorhodomela oregona) and a consumer (the shellfishMytilus trossulus), on 12 ecosystem functions in a coastal ecosystem, both in undisturbed tide pools and following the removal of the dominant producer. We modified analytical methods used in biodiversity–multifunctionality studies to investigate the potential effects of individual dominant species on ecosystem function. The effects of the two dominant species from different trophic levels tended to differ in directionality (+/−) consistently (92% of the time) across the 12 individual functions considered. Using averaging and multiple threshold approaches, we found that the dominant consumer—but not the dominant producer—was associated with ecosystem multifunctionality. Additionally, the relationship between abundance and multifunctionality differed depending on whether the dominant producer was present, with a negative relationship between the dominant consumer and ecosystem function with the dominant producer present compared to a non‐significant, positive trend where the producer had been removed. Our findings suggest that interactions among dominant species can drive ecosystem function. The results of this study highlight the utility of methods previously used in biodiversity‐focused research for studying functional contributions of individual species, as well as the importance of species abundance and identity in driving ecosystem multifunctionality, in the context of species loss. 
    more » « less
  2. Abstract Biological processes play important roles in determining how global changes manifest at local scales. Primary producers can absorb increased CO2via daytime photosynthesis, modifying pH in aquatic ecosystems. Yet producers and consumers also increase CO2via respiration. It is unclear whether biological modification of pH differs across the year, and, if so, what biotic and abiotic drivers underlie temporal differences. We addressed these questions using the intensive study of tide pool ecosystems in Alaska, USA, including quarterly surveys of 34 pools over 1 year and monthly surveys of five pools from spring to fall in a second year. We measured physical conditions, community composition, and changes in pH and dissolved oxygen during the day and night. We detected strong temporal patterns in pH dynamics. Our measurements indicate that pH modification varies spatially (between tide pools) and temporally (across months). This variation in pH dynamics mirrored changes in dissolved oxygen and was associated with community composition, including both relative abundance and diversity of benthic producers and consumers, whose role differed across the year, particularly at night. These results highlight the importance of the time of year when considering the ways that community composition influences pH conditions in aquatic ecosystems. 
    more » « less
  3. Abstract It is critical to understand how human modifications of Earth’s ecosystems are influencing ecosystem functioning, including net and gross community production ( NCP and GCP , respectively) and community respiration ( CR ). These responses are often estimated by measuring oxygen production in the light ( NCP ) and consumption in the dark ( CR ), which can then be combined to estimate GCP . However, the method used to create “dark” conditions—either experimental darkening during the day or taking measurements at night—could result in different estimates of respiration and production, potentially affecting our ability to make integrative predictions. We tested this possibility by measuring oxygen concentrations under daytime ambient light conditions, in darkened tide pools during the day, and during nighttime low tides. We made measurements every 1–3 months over one year in southeastern Alaska. Daytime respiration rates were substantially higher than those measured at night, associated with higher temperature and oxygen levels during the day and leading to major differences in estimates of GCP calculated using daytime versus nighttime measurements. Our results highlight the potential importance of measuring respiration rates during both day and night to account for effects of temperature and oxygen—especially in shallow-water, constrained systems—with implications for understanding the impacts of global change on ecosystem metabolism. 
    more » « less