skip to main content


Search for: All records

Award ID contains: 1756316

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Over the past few decades, there has been an explosion in the amount of publicly available sequencing data. This opens new opportunities for combining data sets to achieve unprecedented sample sizes, spatial coverage or temporal replication in population genomic studies. However, a common concern is that nonbiological differences between data sets may generate patterns of variation in the data that can confound real biological patterns, a problem known as batch effects. In this paper, we compare two batches of low‐coverage whole genome sequencing (lcWGS) data generated from the same populations of Atlantic cod (Gadus morhua). First, we show that with a “batch‐effect‐naive” bioinformatic pipeline, batch effects systematically biased our genetic diversity estimates, population structure inference and selection scans. We then demonstrate that these batch effects resulted from multiple technical differences between our data sets, including the sequencing chemistry (four‐channel vs. two‐channel), sequencing run, read type (single‐end vs. paired‐end), read length (125 vs. 150 bp), DNA degradation level (degraded vs. well preserved) and sequencing depth (0.8× vs. 0.3× on average). Lastly, we illustrate that a set of simple bioinformatic strategies (such as different read trimming and single nucleotide polymorphism filtering) can be used to detect batch effects in our data and substantially mitigate their impact. We conclude that combining data sets remains a powerful approach as long as batch effects are explicitly accounted for. We focus on lcWGS data in this paper, which may be particularly vulnerable to certain causes of batch effects, but many of our conclusions also apply to other sequencing strategies.

     
    more » « less
  2. Abstract

    Low‐coverage whole genome sequencing (lcWGS) has emerged as a powerful and cost‐effective approach for population genomic studies in both model and nonmodel species. However, with read depths too low to confidently call individual genotypes, lcWGS requires specialized analysis tools that explicitly account for genotype uncertainty. A growing number of such tools have become available, but it can be difficult to get an overview of what types of analyses can be performed reliably with lcWGS data, and how the distribution of sequencing effort between the number of samples analysed and per‐sample sequencing depths affects inference accuracy. In this introductory guide to lcWGS, we first illustrate how the per‐sample cost for lcWGS is now comparable to RAD‐seq and Pool‐seq in many systems. We then provide an overview of software packages that explicitly account for genotype uncertainty in different types of population genomic inference. Next, we use both simulated and empirical data to assess the accuracy of allele frequency, genetic diversity, and linkage disequilibrium estimation, detection of population structure, and selection scans under different sequencing strategies. Our results show that spreading a given amount of sequencing effort across more samples with lower depth per sample consistently improves the accuracy of most types of inference, with a few notable exceptions. Finally, we assess the potential for using imputation to bolster inference from lcWGS data in nonmodel species, and discuss current limitations and future perspectives for lcWGS‐based population genomics research. With this overview, we hope to make lcWGS more approachable and stimulate its broader adoption.

     
    more » « less
  3. Abstract

    The study of local adaptation in the presence of ongoing gene flow is the study of natural selection in action, revealing the functional genetic diversity most relevant to contemporary pressures. In addition to individual genes, genome-wide architecture can itself evolve to enable adaptation. Distributed across a steep thermal gradient along the east coast of North America, Atlantic silversides (Menidia menidia) exhibit an extraordinary degree of local adaptation in a suite of traits, and the capacity for rapid adaptation from standing genetic variation, but we know little about the patterns of genomic variation across the species range that enable this remarkable adaptability. Here, we use low-coverage, whole-transcriptome sequencing of Atlantic silversides sampled along an environmental cline to show marked signatures of divergent selection across a gradient of neutral differentiation. Atlantic silversides sampled across 1371 km of the southern section of its distribution have very low genome-wide differentiation (median FST = 0.006 across 1.9 million variants), consistent with historical connectivity and observations of recent migrants. Yet almost 14,000 single nucleotide polymorphisms (SNPs) are nearly fixed (FST > 0.95) for alternate alleles. Highly differentiated SNPs cluster into four tight linkage disequilibrium (LD) blocks that span hundreds of genes and several megabases. Variants in these LD blocks are disproportionately nonsynonymous and concentrated in genes enriched for multiple functions related to known adaptations in silversides, including variation in lipid storage, metabolic rate, and spawning behavior. Elevated levels of absolute divergence and demographic modeling suggest selection maintaining divergence across these blocks under gene flow. These findings represent an extreme case of heterogeneity in levels of differentiation across the genome, and highlight how gene flow shapes genomic architecture in continuous populations. Locally adapted alleles may be common features of populations distributed along environmental gradients, and will likely be key to conserving variation to enable future responses to environmental change.

     
    more » « less
  4. Abstract

    Genetic data represent a relatively new frontier for our understanding of global biodiversity. Ideally, such data should include both organismal DNA‐based genotypes and the ecological context where the organisms were sampled. Yet most tools and standards for data deposition focus exclusively either on genetic or ecological attributes. The Genomic Observatories Metadatabase (GEOME: geome‐db.org) provides an intuitive solution for maintaining links between genetic data sets stored by the International Nucleotide Sequence Database Collaboration (INSDC) and their associated ecological metadata. GEOME facilitates the deposition of raw genetic data to INSDCs sequence read archive (SRA) while maintaining persistent links to standards‐compliant ecological metadata held in the GEOME database. This approach facilitates findable, accessible, interoperable and reusable data archival practices. Moreover, GEOME enables data management solutions for large collaborative groups and expedites batch retrieval of genetic data from the SRA. The article that follows describes how GEOME can enable genuinely open data workflows for researchers in the field of molecular ecology.

     
    more » « less
  5. Lohmueller, Kirk (Ed.)
    Abstract The levels and distribution of standing genetic variation in a genome can provide a wealth of insights about the adaptive potential, demographic history, and genome structure of a population or species. As structural variants are increasingly associated with traits important for adaptation and speciation, investigating both sequence and structural variation is essential for wholly tapping this potential. Using a combination of shotgun sequencing, 10x Genomics linked reads and proximity-ligation data (Chicago and Hi-C), we produced and annotated a chromosome-level genome assembly for the Atlantic silverside (Menidia menidia)—an established ecological model for studying the phenotypic effects of natural and artificial selection—and examined patterns of genomic variation across two individuals sampled from different populations with divergent local adaptations. Levels of diversity varied substantially across each chromosome, consistently being highly elevated near the ends (presumably near telomeric regions) and dipping to near zero around putative centromeres. Overall, our estimate of the genome-wide average heterozygosity in the Atlantic silverside is among the highest reported for a fish, or any vertebrate (1.32–1.76% depending on inference method and sample). Furthermore, we also found extreme levels of structural variation, affecting ∼23% of the total genome sequence, including multiple large inversions (> 1 Mb and up to 12.6 Mb) associated with previously identified haploblocks showing strong differentiation between locally adapted populations. These extreme levels of standing genetic variation are likely associated with large effective population sizes and may help explain the remarkable adaptive divergence among populations of the Atlantic silverside. 
    more » « less
  6. Due to pervasive gene flow and admixture, simple bifurcating trees often do not provide an accurate representation of relationships among diverging lineages, but limited resolution in the available genomic data and the spatial distribution of samples has hindered detailed insights regarding the evolutionary and demographic history of many species and populations. In this issue ofMolecular Ecology, Foote et al. (2019) combine a powerful sampling design with novel analytical methods adopted from human genetics to describe previously unrecognized patterns of recurrent vicariance and admixture among lineages in the globally distributed killer whale (Orcinus orca). Based on sequence data from modern samples alone, they discover clear signatures of ancient admixture with a now extinct “ghost” lineage, providing one of the first accounts of archaic introgression in a nonhominid species. Coupling a cost‐effective sequencing strategy with novel analytical approaches, their paper provides a roadmap for advancing inference of evolutionary history in other nonmodel species, promising exciting times ahead for our field.

     
    more » « less
  7. Humans cause widespread evolutionary change in nature, but we still know little about the genomic basis of rapid adaptation in the Anthropocene. We tracked genomic changes across all protein-coding genes in experimental fish populations that evolved pronounced shifts in growth rates due to size-selective harvest over only four generations. Comparisons of replicate lines show parallel allele frequency shifts that recapitulate responses to size-selection gradients in the wild across hundreds of unlinked variants concentrated in growth-related genes. However, a supercluster of genes also rose rapidly in frequency and dominated the evolutionary dynamic in one replicate line but not in others. Parallel phenotypic changes thus masked highly divergent genomic responses to selection, illustrating how contingent rapid adaptation can be in the face of strong human-induced selection. 
    more » « less