Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Tracer Stirring and Variability in the Antarctic Circumpolar Current Near the Southwest Indian RidgeAbstract Oceanic macroturbulence is efficient at stirring and transporting tracers. The dynamical properties of this stirring can be characterized by statistically quantifying tracer structures. Here, we characterize the macroscale (1–100 km) tracer structures observed by two Seagliders downstream of the Southwest Indian Ridge in the Antarctic Circumpolar Current (ACC). These are some of the first glider observations in an energetic standing meander of the ACC, a region associated with enhanced ventilation. The small‐scale density variance in the mixed layer (ML) was relatively enhanced near the surface and base of the ML, while being muted at mid‐depth in the ML, suggesting the formation mechanism to be associated with ML instabilities and eddies. In addition, ML density fronts were formed by comparable contributions from temperature and salinity gradients. In the interior, along‐isopycnal spectra and structure functions of spice indicated that there is relatively lower variance at smaller scales than would be expected based on non‐local stirring, suggesting that flows smaller than the deformation radius play a role in the cascade of tracers to small scales. These interior spice anomalies spanned across isopycnals, and were found to be about 3–5 times flatter than the aspect ratio that would be expected for O(1) Burger number flows like interior QG dynamics, suggesting the ratio of vertical shear to horizontal strain is greater thanN/f. This further supports that small‐scale flows, with high‐mode vertical structures, impact tracer distributions.more » « less
- 
            Abstract Despite its importance for the global cycling of carbon, there are still large gaps in our understanding of the processes driving annual and seasonal carbon fluxes in the high‐latitude Southern Ocean. This is due in part to a historical paucity of observations in this remote, turbulent, and seasonally ice‐covered region. Here, we use autonomous biogeochemical float data spanning 6 full seasonal cycles and with circumpolar coverage of the Southern Ocean, complemented by atmospheric reanalysis, to construct a monthly climatology of the mixed layer budget of dissolved inorganic carbon (DIC). We investigate the processes that determine the annual mean and seasonal cycle of DIC fluxes in two different zones of the Southern Ocean—the Sea Ice Zone (SIZ) and Antarctic Southern Zone (ASZ). We find that, annually, mixing with carbon‐rich waters at the base of the mixed layer supplies DIC which is, in the ASZ, either used for net biological production or outgassed to the atmosphere. In contrast, in the SIZ, where carbon outgassing and the biological pump are weaker, the surplus of DIC is instead advected northward to the ASZ. In other words, carbon outgassing in the southern Antarctic Circumpolar Current (ACC), which has been attributed to remineralized carbon from deep water upwelled in the ACC, is also due to the wind‐driven transport of DIC from the SIZ. These results stem from the first observation‐based carbon budget of the circumpolar Southern Ocean and thus provide a useful benchmark to evaluate climate models, which have significant biases in this region.more » « less
- 
            Abstract Flow‐topography interactions along the path of the Antarctic Circumpolar Current generate standing meanders, create regions of enhanced eddy kinetic energy (EKE), and modify frontal structure. We consider the impact of standing meanders on ventilation based on oxygen measurements from Argo floats and the patterns of apparent oxygen utilization (AOU). Regions of high‐EKE have relatively reduced AOU values at depths 200–700 m below the base of the mixed layer and larger AOU variance, suggesting enhanced ventilation due to both along‐isopycnal stirring and enhanced exchange across the base of the mixed layer. Vertical exchange is inferred from finite‐size Lyapunov exponents, a proxy for the magnitude of surface lateral density gradients, which suggest that submesoscale vertical velocities may contribute to ventilation. The shaping of ventilation by standing meanders has implications for the temporal and spatial variability of air‒sea exchange.more » « less
- 
            Abstract The thickness‐weighted average (TWA) framework, which treats the residual‐mean flow as the prognostic variable, provides a clear theoretical formulation of the eddy feedback onto the residual‐mean flow. The averaging operator involved in the TWA framework, although in theory being an ensemble mean, in practice has often been approximated by a temporal mean. Here, we analyze an ensemble of North Atlantic simulations at mesoscale‐permitting resolution (1/12°). We therefore recognize means and eddies in terms of ensemble means and fluctuations about those means. The ensemble dimension being orthogonal to the temporal and spatial dimensions negates the necessity for an arbitrary temporal or spatial scale in defining the eddies. Eddy‐mean flow feedbacks are encapsulated in the Eliassen‐Palm (E‐P) flux tensor and its convergence indicates that eddy momentum fluxes dominate in the separated Gulf Stream. The eddies can be interpreted to contribute to the zonal meandering of the Gulf Stream and a northward migration of it in the meridional direction. Downstream of the separated Gulf Stream in the North Atlantic Current region, the interfacial form stress convergence becomes leading order in the E‐P flux convergence.more » « less
- 
            Abstract Standing meanders are a key component of the Antarctic Circumpolar Current (ACC) circulation system, and numerical studies have shown that these features may locally enhance subduction, upwelling, as well as lateral and vertical tracer transport. Yet, observational data from these regions remain sparse. Here, we present results based on measurements made by a group of autonomous platforms sampling an ACC standing meander formed due to the interaction of the Polar Front with the Southwest Indian Ridge. Two Seagliders were deployed alongside a Biogeochemical‐Argo float that was advected through the standing meander. In the high eddy kinetic energy region of the standing meander, the glider observations reveal enhanced submesoscale frontal gradients as well as heightened tracer variability at depth, as compared to the more quiescent region further downstream. Vertical gradients in spice and apparent oxygen utilization are reduced in the standing meander despite similarities in the large‐scale vertical stratification, suggesting greater ventilation of the surface ocean. These observations are consistent with numerical studies that highlight standing meanders as hotspots for ventilation and subduction due to enhanced mesoscale stirring and submesoscale vertical velocities. Our results emphasize the need to account for spatial heterogeneity in processes influencing air‐sea exchange, carbon export, and biogeochemical cycling in the Southern Ocean.more » « less
- 
            Abstract Slowly evolving stratified flow over rough topography is subject to substantial drag due to internal motions, but often numerical simulations are carried out at resolutions where this “wave” drag must be parameterized. Here we highlight the importance of internal drag from topography with scales that cannot radiate internal waves, but may be highly nonlinear, and we propose a simple parameterization of this drag that has a minimum of fit parameters compared to existing schemes. The parameterization smoothly transitions from a quadratic drag law () for lowNh/u0(linear wave dynamics) to a linear drag law () for highNh/u0flows (nonlinear blocking and hydraulic dynamics), whereNis the stratification,his the height of the topography, andu0is the near-bottom velocity; the parameterization does not have a dependence on Coriolis frequency. Simulations carried out in a channel with synthetic bathymetry and steady body forcing indicate that this parameterization accurately predicts drag across a broad range of forcing parameters when the effect of reduced near-bottom mixing is taken into account by reducing the effective height of the topography. The parameterization is also tested in simulations of wind-driven channel flows that generate mesoscale eddy fields, a setup where the downstream transport is sensitive to the bottom drag parameterization and its effect on the eddies. In these simulations, the parameterization replicates the effect of rough bathymetry on the eddies. If extrapolated globally, the subinertial topographic scales can account for 2.7 TW of work done on the low-frequency circulation, an important sink that is redistributed to mixing in the open ocean.more » « less
- 
            Abstract New estimates ofpCO2from profiling floats deployed by the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project have demonstrated the importance of wintertime outgassing south of the Polar Front, challenging the accepted magnitude of Southern Ocean carbon uptake (Gray et al., 2018,https://doi:10.1029/2018GL078013). Here, we put 3.5 years of SOCCOM observations into broader context with the global surface carbon dioxide database (Surface Ocean CO2Atlas, SOCAT) by using the two interpolation methods currently used to assess the ocean models in the Global Carbon Budget (Le Quéré et al., 2018,https://doi:10.5194/essd‐10‐2141‐2018) to create a ship‐only, a float‐weighted, and a combined estimate of Southern Ocean carbon fluxes (<35°S). In our ship‐only estimate, we calculate a mean uptake of −1.14 ± 0.19 Pg C/yr for 2015–2017, consistent with prior studies. The float‐weighted estimate yields a significantly lower Southern Ocean uptake of −0.35 ± 0.19 Pg C/yr. Subsampling of high‐resolution ocean biogeochemical process models indicates that some of the differences between float and ship‐only estimates of the Southern Ocean carbon flux can be explained by spatial and temporal sampling differences. The combined ship and float estimate minimizes the root‐mean‐squarepCO2difference between the mapped product and both data sets, giving a new Southern Ocean uptake of −0.75 ± 0.22 Pg C/yr, though with uncertainties that overlap the ship‐only estimate. An atmospheric inversion reveals that a shift of this magnitude in the contemporary Southern Ocean carbon flux must be compensated for by ocean or land sinks within the Southern Hemisphere.more » « less
- 
            The Southern Ocean plays a fundamental role in the global carbon cycle, dominating the oceanic uptake of heat and carbon added by anthropogenic activities and modulating atmospheric carbon concentrations in past, present, and future climates. However, the remote and extreme conditions found there make the Southern Ocean perpetually one of the most difficult places on the planet to observe and to model, resulting in significant and persistent uncertainties in our knowledge of the oceanic carbon cycle there. The flow of carbon in the Southern Ocean is traditionally understood using a zonal mean framework, in which the meridional overturning circulation drives the latitudinal variability observed in both air–sea flux and interior ocean carbon concentration. However, recent advances, based largely on expanded observation and modeling capabilities in the region, reveal the importance of processes acting at smaller scales, including basin-scale zonal asymmetries in mixed-layer depth, mesoscale eddies, and high-frequency atmospheric variability. Assessing the current state of knowledge and remaining gaps emphasizes the need to move beyond the zonal mean picture and embrace a four-dimensional understanding of the carbon cycle in the Southern Ocean.more » « less
- 
            The ocean’s turbulent energy cycle has a paradox; large-scale eddies under the control of Earth’s rotation transfer kinetic energy (KE) to larger scales via an inverse cascade, while a transfer to smaller scales is needed for dissipation. It has been hypothesized, using simulations, that fronts, waves, and other turbulent structures can produce a forward cascade of KE toward dissipation scales. However, this forward cascade and its coexistence with the inverse cascade have never been observed. Here, we present the first evidence of a dual KE cascade in the ocean by analyzing in situ velocity measurements from surface drifters. Our results show that KE is injected at two dominant scales and transferred to both large and small scales, with the downscale flux dominating at scales smaller than ∼1 to 10 km. The cascade rates are modulated seasonally, with stronger KE injection and downscale transfer during winter.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
