skip to main content


Search for: All records

Award ID contains: 1756883

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The mean-state bias and the associated forecast errors of the El Niño–Southern Oscillation (ENSO) are investigated in a suite of 2-yr-lead retrospective forecasts conducted with the Community Earth System Model, version 1, for 1954–2015. The equatorial Pacific cold tongue in the forecasts is too strong and extends excessively westward due to a combination of the model’s inherent climatological bias, initialization imbalance, and errors in initial ocean data. The forecasts show a stronger cold tongue bias in the first year than that inherent to the model due to the imbalance between initial subsurface oceanic states and model dynamics. The cold tongue bias affects not only the pattern and amplitude but also the duration of ENSO in the forecasts by altering ocean–atmosphere feedbacks. The predicted sea surface temperature anomalies related to ENSO extend to the far western equatorial Pacific during boreal summer when the cold tongue bias is strong, and the predicted ENSO anomalies are too weak in the central-eastern equatorial Pacific. The forecast errors of pattern and amplitude subsequently lead to errors in ENSO phase transition by affecting the amplitude of the negative thermocline feedback in the equatorial Pacific and tropical interbasin adjustments during the mature phase of ENSO. These ENSO forecast errors further degrade the predictions of wintertime atmospheric teleconnections, land surface air temperature, and rainfall anomalies over the Northern Hemisphere. These mean-state and ENSO forecast biases are more pronounced in forecasts initialized in boreal spring–summer than other seasons due to the seasonal intensification of the Bjerknes feedback.

     
    more » « less
  2. A decades-long affair

    Decadal climate variability and change affects nearly every aspect of our world, including weather, agriculture, ecosystems, and the economy. Predicting its expression is thus of critical importance on multiple fronts. Poweret al. review what is known about tropical Pacific decadal climate variability and change, the degree to which it can be simulated and predicted, and how we might improve our understanding of it. More accurate projections will require longer and more detailed instrumental and paleoclimate records, improved climate models, and better data assimilation methods. —HJS

     
    more » « less
  3. Abstract

    This study presents a description of the El Niño–Southern Oscillation (ENSO) and Pacific Decadal Variability (PDV) in a multicentury preindustrial simulation of the Community Earth System Model Version 2 (CESM2). The model simulates several aspects of ENSO relatively well, including dominant timescale, tropical and extratropical precursors, composite evolution of El Niño and La Niña events, and ENSO teleconnections. The good model representation of ENSO spectral characteristics is consistent with the spatial pattern of the anomalous equatorial zonal wind stress in the model, which results in the correct adjustment timescale of the equatorial thermocline according to the delayed/recharge oscillator paradigms, as also reflected in the realistic time evolution of the equatorial Warm Water Volume. PDV in the model exhibits a pattern that is very similar to the observed, with realistic tropical and South Pacific signatures which were much weaker in some of the CESM2 predecessor models. The tropical component of PDV also shows an association with ENSO decadal modulation which is similar to that found in observations. However, the ENSO amplitude is about 30% larger than observed in the preindustrial CESM2 simulation, and even larger in the historical ensemble, perhaps as a result of anthropogenic influences. In contrast to observations, the largest variability is found in the central Pacific rather than in the eastern Pacific, a discrepancy that somewhat hinders the model's ability to represent a full diversity in El Niño spatial patterns and appears to be associated with an unrealistic confinement of the precipitation anomalies to the western Pacific.

     
    more » « less
  4. null (Ed.)
    Abstract El Niño and La Niña events show a wide range of durations over the historical record. The predictability of event duration has remained largely unknown, although multiyear events could prolong their climate impacts. To explore the predictability of El Niño and La Niña event duration, multiyear ensemble forecasts are conducted with the Community Earth System Model, version 1 (CESM1). The 10–40-member forecasts are initialized with observed oceanic conditions on 1 March, 1 June, and 1 November of each year during 1954–2015; ensemble spread is created through slight perturbations to the atmospheric initial conditions. The CESM1 predicts the duration of individual El Niño and La Niña events with lead times ranging from 6 to 25 months. In particular, forecasts initialized in November, near the first peak of El Niño or La Niña, can skillfully predict whether the event continues through the second year with 1-yr lead time. The occurrence of multiyear La Niña events can be predicted even earlier with lead times up to 25 months, especially when they are preceded by strong El Niño. The predictability of event duration arises from initial thermocline depth anomalies in the equatorial Pacific, as well as sea surface temperature anomalies within and outside the tropical Pacific. The forecast error growth, on the other hand, originates mainly from atmospheric variability over the North Pacific in boreal winter. The high predictability of event duration indicates the potential for extending 12-month operational forecasts of El Niño and La Niña events by one additional year. 
    more » « less
  5. null (Ed.)
    Abstract Analysis of observational data and a long control simulation of the Community Earth System Model, version 1 (CESM1), shows that El Niño events developing in boreal spring to early summer usually terminate after peaking in winter, whereas those developing after summer tend to persist into the second year. To test the predictability of El Niño duration based on the onset timing, perfect model predictions were conducted for three El Niño events developing in April or September in the CESM1 control simulation. For each event, 30-member ensemble simulations are initialized with the same oceanic conditions in the onset month but with slightly different atmospheric conditions and integrated for 2 years. The CESM1 successfully predicts the termination of El Niño after the peak in 95% of the April-initialized simulations and the continuation of El Niño into the second year in 83% of the September-initialized simulations. The predictable component of El Niño duration arises from the initial oceanic conditions that affect the timing and magnitude of negative feedback within the equatorial Pacific, as well as from the Indian and Atlantic Oceans. The ensemble spread of El Niño duration, on the other hand, originates from surface wind variability over the western equatorial Pacific in spring following the peak. The wind variability causes a larger spread in the September-initialized than the April-initialized ensemble simulations due to weaker negative feedback in spring. These results indicate potential predictability of El Niño events beyond the current operational forecasts by 1 year. 
    more » « less
  6. The temporal evolution of El Niño and La Niña varies greatly from event to event. To understand the dynamical processes controlling the duration of El Niño and La Niña events, a suite of observational data and a long control simulation of the Community Earth System Model, version 1, are analyzed. Both observational and model analyses show that the duration of El Niño is strongly affected by the timing of onset. El Niño events that develop early tend to terminate quickly after the mature phase because of the early arrival of delayed negative oceanic feedback and fast adjustments of the tropical Atlantic and Indian Oceans to the tropical Pacific Ocean warming. The duration of La Niña events is, on the other hand, strongly influenced by the amplitude of preceding warm events. La Niña events preceded by a strong warm event tend to persist into the second year because of large initial discharge of the equatorial oceanic heat content and delayed adjustments of the tropical Atlantic and Indian Oceans to the tropical Pacific cooling. For both El Niño and La Niña, the interbasin sea surface temperature (SST) adjustments reduce the anomalous SST gradient toward the tropical Pacific and weaken surface wind anomalies over the western equatorial Pacific, hastening the event termination. Other factors external to the dynamics of El Niño–Southern Oscillation, such as coupled variability in the tropical Atlantic and Indian Oceans and atmospheric variability over the North Pacific, also contribute to the diversity of event duration. 
    more » « less