skip to main content


Search for: All records

Award ID contains: 1757207

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A distribution transformer's thermal operating conditions can impose a limitation on the Hosting Capacity (HC) of an electrical distribution feeder for PV interconnections in the feeder's low‐voltage network. This is undesirable as it curtails PV interconnection of both residential and commercial customers in the secondary networks at a time when there are record numbers of interconnection requests by utilities' customers. The authors analyse the limitations on HC due to transformer loading and degradation considerations. Then, the paper proposes a battery energy storage system (BESS) dispatch strategy that will mitigate the limitation on distribution feeder HC by distribution transformers. Three scenarios of HC were simulated for a test network—HC evaluation without restrictions by the distribution transformer (scenario 1), HC evaluation with restrictions by the distribution transformer (scenario 2), and HC evaluation without restriction by the distribution transformer, and with the implementation of the proposed BESS mitigation strategy (scenario 3). Simulation results show that transformer lifetime is depleted to about 6% of expected lifetime for unrestricted HC in scenario 1. Curtailing the HC by 32% in scenario 2 improves the lifetime to 149% of expected lifetime. Implementing the proposed BESS in scenario 3 improves the transformer lifetime to 127% and increases the HC by 62% above the curtailed value in scenario 2, and by 10% above the original HC in scenario 1. The BESS strategy implementation produced cost savings of 49% and 27% of the transformer cost in scenarios 2 and 3, respectively, due to deferred transformer replacement. Conversely, there is a 1600% replacement cost incurred in scenario 1, which underscores the need for a mitigation strategy. The proposed BESS strategy does not only improve the HC of a distribution feeder but also increases a distribution transformer's lifetime leading to replacement cost savings.

     
    more » « less
    Free, publicly-accessible full text available March 18, 2025
  2. Abstract

    A three‐stage rail‐to‐rail bulk‐driven class AB OTA that operates with ±0.15 V supplies and a power dissipation of 90 nW is introduced. The first two stages use resistive local common mode feedback. The OTA uses simple phase lead compensation. It has a 36 MHz.pF/μW small signal figure of merit and a 55(V/μs) pF/μW large signal figure of merit.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  3. Abstract

    This paper addresses the cybersecurity of hierarchical control of AC microgrids with distributed secondary control. The false data injection (FDI) cyberattack is assumed to alter the operating frequency of inverter‐based distributed generators (DGs) in an islanded microgrid. For the microgrids consisting of the grid‐forming inverters with the secondary control operating in a distributed manner, the attack on one DG deteriorates not only the corresponding DG but also the other DGs that receive the corrupted information via the distributed communication network. To this end, an FDI attack detection algorithm based on a combination of Gaussian process regression and one‐class support vector machine (OC‐SVM) anomaly detection is introduced. This algorithm is unsupervised in the sense that it does not require labelled abnormal data for training which is difficult to collect. The Gaussian process model predicts the response of the DG, and its prediction error and estimated variances provide input to an OC‐SVM anomaly detector. This algorithm returns enhanced detection performance than the standalone OC‐SVM. The proposed cyberattack detector is trained and tested with the data collected from a 4 DG microgrid test model and is validated in both simulation and hardware‐in‐the‐loop testbeds.

     
    more » « less
  4. Abstract

    This paper proposes and develops the idea of using a community supercapacitor (SC) in an islanded DC multiple nano‐grids (MNG) system. In the proposed structure, the community SC works in tandem with the community/cloud battery energy storage system (CBESS) of the DC MNG. This combination forms a grid‐forming battery‐supercapacitor cloud hybrid energy storage system (CHESS), which is responsible for maintaining the voltage stability and power balance at the common DC bus of the MNG system. Also, to effectively utilize the SC capacity, this paper proposes a modified control structure for each DC nano‐grid enabling the local BESS units to coordinate with the community SC. Then, it is shown that, in the proposed grid‐forming CHESS technology, the output power of all the local and community BESS units has significantly smoother power variations leading to a higher battery lifetime. Additionally, it is shown that the proposed CHESS technology can improve the voltage stability of the system leading to higher voltage quality. Moreover, it is discussed analytically that the proposed CHESS technology requires less energy storage capacity for the community SC compared to its equivalent MNG with a distributed SC architecture. Finally, these results are verified by simulating two case‐study MNGs in MATLAB/Simulink.

     
    more » « less
  5. Data set that was used to determine the frequency each of 4 key words (public engagement, education, outreach, or science communication) in the title or abstract of published papers in Freshwater Science (formerly the Journal of the North American Benthological Society) and oral presentations (talks) at the annual Society for Freshwater Science meetings from 1997 to 2019. Does not include any data on talks for 2013-2014 because they were not published during those years. The dataset was collected by reviewing abstracts in the journal Freshwater Science (formerly the Journal of North American Benthological Society [JNABS]) from 1997 to 2019 as well as searching abstracts from oral presentations at the SFS Annual Meeting (available online for 1997–2012 and 2015–2019 at https://sfsannualmeeting.org/SearchAll.cfm) for key words (public engagement, science communication, education, outreach) related to PES. The dataset was processed by inputting the data collected from our search (i.e., year, type of work, keyword, and number of times the keyword appeared in that type of work during the specified year) into a .csv file using Microsoft Excel. R was used (https://www.r-project.org/) and its accompanying package ggplot2 (https://ggplot2.tidyverse.org/) to plot the data. 
    more » « less
  6. Free, publicly-accessible full text available December 1, 2024
  7. Free, publicly-accessible full text available November 6, 2024
  8. In this paper, we present an efficient strategy to enumerate the number of k-cycles, g≤k<2g, in the Tanner graph of a quasi-cyclic low-density parity-check (QC-LDPC) code with girth g using its polynomial parity-check matrix H. This strategy works for both (dv,dc)-regular and irregular QC-LDPC codes. In this approach, we note that the mth power of the polynomial adjacency matrix can be used to describe walks of length m in the protograph and can therefore be sufficiently described by the matrices Bm(H)(HHT)m/2H(m2), where m≥0. We provide formulas for the number of k-cycles, Nk, by just taking into account repetitions in some multisets constructed from the matrices Bm(H). This approach is shown to have low complexity. For example, in the case of QC-LDPC codes based on the 3×nv fully-connected protograph, the complexity of determining Nk, for k=4,6,8,10 and 12, is O(nv2log(N)), O(nv2log(nv)log(N)), O(nv4log4(nv)log(N)), O(nv4log(nv)log(N)) and O(nv6log6(nv)log(N)), respectively. The complexity, depending logarithmically on the lifting factor N, gives our approach, to the best of our knowledge, a significant advantage over previous works on the cycle distribution of QC-LDPC codes. 
    more » « less
    Free, publicly-accessible full text available September 14, 2024
  9. In this paper, we investigate the problem of decoder error propagation for spatially coupled low-density parity-check (SC-LDPC) codes with sliding window decoding (SWD). This problem typically manifests itself at signal-to-noise ratios (SNRs) close to capacity under low-latency operating conditions. In this case, infrequent but severe decoder error propagation can sometimes occur. To help understand the error propagation problem in SWD of SC-LDPC codes, a multi-state Markov model is developed to describe decoder behavior and to analyze the error performance of spatially coupled LDPC codes under these conditions. We then present two approaches -check node (CN) doping and variable node (VN) doping -to combating decoder error propagation and improving decoder performance. Next we describe how the performance can be further improved by employing an adaptive approach that depends on the availability of a noiseless binary feedback channel. To illustrate the effectiveness of the doping techniques, we analyze the error performance of CN doping and VN doping using the multi-state decoder model. We then present computer simulation results showing that CN and VN doping significantly improve the performance in the operating range of interest at a cost of a small rate loss and that adaptive doping further improves the performance. We also show that the rate loss is always less than that resulting from encoder termination and can be further reduced by doping only a fraction of the VNs at each doping position in the code graph with only a minor impact on performance. Finally, we show how the encoding problem for VN doping can be greatly simplified by doping only systematic bits, with little or no performance loss. 
    more » « less
    Free, publicly-accessible full text available September 7, 2024
  10. Free, publicly-accessible full text available September 4, 2024