skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1757211

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Citizen-generated counter speech is a promising way to fight hate speech and promote peaceful, non-polarized discourse. However, there is a lack of large-scale longitudinal studies of its effectiveness for reducing hate speech. To this end, we perform an exploratory analysis of the effectiveness of counter speech using several different macro- and micro-level measures to analyze 180,000 political conversations that took place on German Twitter over four years. We report on the dynamic interactions of hate and counter speech over time and provide insights into whether, as in ‘classic’ bullying situations, organized efforts are more effective than independent individuals in steering online discourse. Taken together, our results build a multifaceted picture of the dynamics of hate and counter speech online. While we make no causal claims due to the complexity of discourse dynamics, our findings suggest that organized hate speech is associated with changes in public discourse and that counter speech—especially when organized—may help curb hateful rhetoric in online discourse. 
    more » « less
  2. A key question concerning collective decisions is whether a social system can settle on the best available option when some members learn from others instead of evaluating the options on their own. This question is challenging to study, and previous research has reached mixed conclusions, because collective decision outcomes depend on the insufficiently understood complex system of cognitive strategies, task properties, and social influence processes. This study integrates these complex interactions together in one general yet partially analytically tractable mathematical framework using a dynamical system model. In particular, it investigates how the interplay of the proportion of social learners, the relative merit of options, and the type of conformity response affect collective decision outcomes in a binary choice. The model predicts that, when the proportion of social learners exceeds a critical threshold, a bistable state appears in which the majority can end up favoring either the higher- or lower-merit option, depending on fluctuations and initial conditions. Below this threshold, the high-merit option is chosen by the majority. The critical threshold is determined by the conformity response function and the relative merits of the two options. The study helps reconcile disagreements about the effect of social learners on collective performance and proposes a mathematical framework that can be readily adapted to extensions investigating a wider variety of dynamics. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Belief change and spread have been studied in many disciplines—from psychology, sociology, economics and philosophy, to biology, computer science and statistical physics—but we still do not have a firm grasp on why some beliefs change more easily and spread faster than others. To fully capture the complex social-cognitive system that gives rise to belief dynamics, we first review insights about structural components and processes of belief dynamics studied within different disciplines. We then outline a unifying quantitative framework that enables theoretical and empirical comparisons of different belief dynamic models. This framework uses a statistical physics formalism, grounded in cognitive and social theory, as well as empirical observations. We show how this framework can be used to integrate extant knowledge and develop a more comprehensive understanding of belief dynamics. 
    more » « less