skip to main content


Search for: All records

Award ID contains: 1757946

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 19, 2024
  2. Interactions of N2 at oxide surfaces are important for understanding electrocatalytic nitrogen reduction reaction (NRR) mechanisms. Interactions of N2 at the polycrystalline vanadium oxide/vapor interface were monitored at room temperature and total pressures up to 10−1 Torr using Near-Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS). The oxide film was predominantly V(IV), with V(III) and V(V) components. XPS spectra were acquired in environments of both pure N2 and equal pressures of N2 and H2O vapor. In pure N2, broad, partially resolved N1s features were observed at binding energies of 401.0 and 398.7 eV, with a relative intensity of ∼3:1, respectively. These features remained upon subsequent pumpdown to 10−9 Torr. The observed maximum N surface coverage was ∼1.5 × 1013 cm−2—a fraction of a monolayer. In the presence of equal pressures of H2O, the adsorbed N intensity at 10−1 Torr is ∼25% of that observed in the absence of H2O. The formation of molecularly adsorbed H2O was also observed. Density functional theory-based calculations suggest favorable absorption energies for N2 bonding to both V(IV) and V(III) cation sites but less so for V(V) sites. Hartree–Fock-based cluster calculations for N2–V end-on adsorption show that experimental XPS doublet features are consistent with the calculated shake-up and normal, final ionic configurations for N2 end-on bonding to V(III) sites but not V(IV) sites. The XPS spectra of vanadium oxide transferred in situ between electrochemical and UHV environments indicate that the oxide surfaces studied here are stable upon exposure to the electrolyte under NRR-relevant conditions.

     
    more » « less
  3. null (Ed.)
    The APOBEC3 (A3) family of single-stranded DNA cytidine deaminases are host restriction factors that inhibit lentiviruses, such as HIV-1, in the absence of the Vif protein that causes their degradation. Deamination of cytidine in HIV-1 (-)DNA forms uracil that causes inactivating mutations when uracil is used as a template for (+)DNA synthesis. For APOBEC3C (A3C), the chimpanzee and gorilla orthologues are more active than human A3C, and the Old World Monkey A3C from rhesus macaque (rh) is not active against HIV-1. Multiple integrated analyses determined why rhA3C was not active against HIV-1 and how to increase this activity. Biochemical, virological, and coevolutionary analyses combined with molecular dynamics simulations showed that the key amino acids needed to promote rhA3C antiviral activity also promoted dimerization. Although rhA3C shares a similar dimer interface with hominid A3C, the key amino acid contacts were different. Overall, our results determine the basis for why rhA3C is less active than human A3C, establish the amino acid network for dimerization and increased activity, and track the loss and gain of A3C antiviral activity in primates. The coevolutionary analysis of the A3C dimerization interface provides a basis from which to analyze dimerization interfaces of other A3 family members. 
    more » « less
  4. The chemical structures of Co oxynitrides – in particular, interactions among N and O atoms bonded to the same cobalt – are of great importance for an array of catalytic and materials applications. X-ray diffraction (XRD), core and valence band X-ray photoelectron spectroscopy (XPS) and plane wave density functional theory (DFT) calculations are used to probe chemical and electronic interactions of nitrogen-rich CoO1-xNx (x > 0.7) films deposited on Si(100) using NH3 or N2 plasma-based sputter deposition or surface nitridation. Total energy calculations indicate that the zincblende (ZB) structure is energetically favored over the rocksalt (RS) structure for x > ~ 0.2, with an energy minimum observed in the ZB structure for x ~ 0.8 - 0.9. This is in close agreement with XPS-derived film compositions when corrected for surface oxide/hydroxide layers. XRD data indicate that films deposited on Si (100) at room temperature display either a preferred (220) orientation or no diffraction pattern, and are consistent with either rocksalt (RS) or zincblende (ZB) structure. Comparison between experimental and calculated X-ray excited valence band densities of states – also similar for all films synthesized herein – demonstrates a close agreement with a ZB, but not an RS structure. Core level XPS spectra exhibit systematic differences between films deposited in NH3 vs N2 plasma environments. Films deposited by N2 plasma magnetron sputtering exhibit greater O content as evidenced by systematic shifts in N 1s binding energies. Excellent agreement with experiment for core level binding energies is obtained for DFT calculations based on the ZB structure, but not for the RS structure. The agreement between theory and experiment demonstrates that these N-rich Co oxynitride films exhibit the ZB structure, and forms the basis of a predictive model for understanding how N and O interactions impact the electronic, magnetic and catalytic properties of these materials. 
    more » « less
  5. Experimental water-to-methyl isobutyl ketone partition coefficientshave been determined for 27 different organic solutes based on gaschromatographic measurements. Updated Abraham model correlationswere determined for describing solute transfer into methyl isobutylketone by combining the measured partition coefficient data deter-mined in the present study with published experimental values takenfrom chemical and engineering literature. One hundred nineteen com-pounds were used in determining the revised Abraham model correla-tions. After calculations, the revised mathematical correlations werefound to match the experimental data to within an overall averagestandard deviation of 0.21 log units. 
    more » « less