Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract ObjectivesIncreased use of three‐dimensional (3D) imaging data has led to a need for methods capable of capturing rich shape descriptions. Semi‐landmarks have been demonstrated to increase shape information but placement in 3D can be time consuming, computationally expensive, or may introduce artifacts. This study implements and compares three strategies to more densely sample a 3D image surface. Materials and methodsThree dense sampling strategies: patch, patch‐thin‐plate spline (TPS), and pseudo‐landmark sampling, are implemented to analyze skulls from three species of great apes. To evaluate the shape information added by each strategy, the semi or pseudo‐landmarks are used to estimate a transform between an individual and the population average template. The average mean root squared error between the transformed mesh and the template is used to quantify the success of the transform. ResultsThe landmark sets generated by each method result in estimates of the template that on average were comparable or exceeded the accuracy of using manual landmarks alone. The patch method demonstrates the most sensitivity to noise and missing data, resulting in outliers with large deviations in the mean shape estimates. Patch‐TPS and pseudo‐landmarking provide more robust performance in the presence of noise and variability in the dataset. ConclusionsEach landmarking strategy was capable of producing shape estimations of the population average templates that were generally comparable to manual landmarks alone while greatly increasing the density of the shape information. This study highlights the potential trade‐offs between correspondence of the semi‐landmark points, consistent point spacing, sample coverage, repeatability, and computational time.more » « less
-
Abstract Landmark‐based geometric morphometrics has emerged as an essential discipline for the quantitative analysis of size and shape in ecology and evolution. With the ever‐increasing density of digitized landmarks, the possible development of a fully automated method of landmark placement has attracted considerable attention. Despite the recent progress in image registration techniques, which could provide a pathway to automation, three‐dimensional (3D) morphometric data are still mainly gathered by trained experts. For the most part, the large infrastructure requirements necessary to perform image‐based registration, together with its system specificity and its overall speed, have prevented its wide dissemination.Here, we propose and implement a general and lightweight point cloud‐based approach to automatically collect high‐dimensional landmark data in 3D surfaces (Automated Landmarking through Point cloud Alignment and Correspondence Analysis). Our framework possesses several advantages compared with image‐based approaches. First, it presents comparable landmarking accuracy, despite relying on a single, random reference specimen and much sparser sampling of the structure's surface. Second, it can be efficiently run on consumer‐grade personal computers. Finally, it is general and can be applied at the intraspecific level to any biological structure of interest, regardless of whether anatomical atlases are available.Our validation procedures indicate that the method can recover intraspecific patterns of morphological variation that are largely comparable to those obtained by manual digitization, indicating that the use of an automated landmarking approach should not result in different conclusions regarding the nature of multivariate patterns of morphological variation.The proposed point cloud‐based approach has the potential to increase the scale and reproducibility of morphometrics research. To allow ALPACA to be used out‐of‐the‐box by users with no prior programming experience, we implemented it as a SlicerMorph module. SlicerMorph is an extension that enables geometric morphometrics data collection and 3D specimen analysis within the open‐source 3D Slicer biomedical visualization ecosystem. We expect that convenient access to this platform will make ALPACA broadly applicable within ecology and evolution.more » « less
-
Abstract Large‐scale digitization projects such as#ScanAllFishesandoVertare generating high‐resolution microCT scans of vertebrates by the thousands. Data from these projects are shared with the community using aggregate 3D specimen repositories like MorphoSource through various open licenses. We anticipate an explosion of quantitative research in organismal biology with the convergence of available data and the methodologies to analyse them.Though the data are available, the road from a series of images to analysis is fraught with challenges for most biologists. It involves tedious tasks of data format conversions, preserving spatial scale of the data accurately, 3D visualization and segmentations, and acquiring measurements and annotations. When scientists use commercial software with proprietary formats, a roadblock for data exchange, collaboration and reproducibility is erected that hurts the efforts of the scientific community to broaden participation in research.We developed SlicerMorph as an extension of 3D Slicer, a biomedical visualization and analysis ecosystem with extensive visualization and segmentation capabilities built on proven python‐scriptable open‐source libraries such as Visualization Toolkit and Insight Toolkit. In addition to the core functionalities of Slicer, SlicerMorph provides users with modules to conveniently retrieve open‐access 3D models or import users own 3D volumes, to annotate 3D curve and patch‐based landmarks, generate landmark templates, conduct geometric morphometric analyses of 3D organismal form using both landmark‐driven and landmark‐free approaches, and create 3D animations from their results. We highlight how these individual modules can be tied together to establish complete workflow(s) from image sequence to morphospace. Our software development efforts were supplemented with short courses and workshops that cover the fundamentals of 3D imaging and morphometric analyses as it applies to study of organismal form and shape in evolutionary biology.Our goal is to establish a community of organismal biologists centred around Slicer and SlicerMorph to facilitate easy exchange of data and results and collaborations using 3D specimens. Our proposition to our colleagues is that using a common open platform supported by a large user and developer community ensures the longevity and sustainability of the tools beyond the initial development effort.more » « less
-
Charles, Cyril (Ed.)Manually collecting landmarks for quantifying complex morphological phenotypes can be laborious and subject to intra and interobserver errors. However, most automated landmarking methods for efficiency and consistency fall short of landmarking highly variable samples due to the bias introduced by the use of a single template. We introduce a fast and open source automated landmarking pipeline (MALPACA) that utilizes multiple templates for accommodating large-scale variations. We also introduce a K-means method of choosing the templates that can be used in conjunction with MALPACA, when no prior information for selecting templates is available. Our results confirm that MALPACA significantly outperforms single-template methods in landmarking both single and multi-species samples. K-means based template selection can also avoid choosing the worst set of templates when compared to random template selection. We further offer an example of post-hoc quality check for each individual template for further refinement. In summary, MALPACA is an efficient and reproducible method that can accommodate large morphological variability, such as those commonly found in evolutionary studies. To support the research community, we have developed open-source and user-friendly software tools for performing K-means multi-templates selection and MALPACA.more » « less