Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Consider an algorithm computing in a differential field with several commuting derivations such that the only operations it performs with the elements of the field are arithmetic operations, differentiation, and zero testing. We show that, if the algorithm is guaranteed to terminate on every input, then there is a computable upper bound for the size of the output of the algorithm in terms of the size of the input. We also generalize this to algorithms working with models of good enough theories (including, for example, difference fields). We then apply this to differential algebraic geometry to show that there exists a computable uniform upper bound for the number of components of any variety defined by a system of polynomial PDEs. We then use this bound to show the existence of a computable uniform upper bound for the elimination problem in systems of polynomial PDEs with delays.more » « less
-
We study solutions of difference equations in the rings of sequences and, more generally, solutions of equations with a monoid action in the ring of sequences indexed by the monoid. This framework includes, for example, difference equations on grids (for example, standard difference schemes) and difference equations in functions on words. On the universality side, we prove a version of strong Nullstellensatz for such difference equations under the assumption that the cardinality of the ground field is greater than the cardinality of the monoid and construct an example showing that this assumption cannot be omitted. On the undecidability side, we show that the following problems are undecidable:more » « less
An official website of the United States government
