Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract There is a well-documented gap between the observed number of works produced by women and by men in science, with clear consequences for the retention and promotion of women 1 . The gap might be a result of productivity differences 2–5 , or it might be owing to women’s contributions not being acknowledged 6,7 . Here we find that at least part of this gap is the result of unacknowledged contributions: women in research teams are significantly less likely than men to be credited with authorship. The findings are consistent across three very different sources of data. Analysis of the first source—large-scale administrative data on research teams, team scientific output and attribution of credit—show that women are significantly less likely to be named on a given article or patent produced by their team relative to their male peers. The gender gap in attribution is present across most scientific fields and almost all career stages. The second source—an extensive survey of authors—similarly shows that women’s scientific contributions are systematically less likely to be recognized. The third source—qualitative responses—suggests that the reason that women are less likely to be credited is because their work is often not known, is not appreciated or is ignored. At least some of the observed gender gap in scientific output may be owing not to differences in scientific contribution, but rather to differences in attribution.more » « less
-
This article presents a new framework for realizing the value of linked data understood as a strategic asset and increasingly necessary form of infrastructure for policy-making and research in many domains. We outline a framework, the ‘data mosaic’ approach, which combines socio-organizational and technical aspects. After demonstrating the value of linked data, we highlight key concepts and dangers for community-developed data infrastructures. We concretize the framework in the context of work on science and innovation generally. Next we consider how a new partnership to link federal survey data, university data, and a range of public and proprietary data represents a concrete step toward building and sustaining a valuable data mosaic. We discuss technical issues surrounding linked data but emphasize that linking data involves addressing the varied concerns of wide-ranging data holders, including privacy, confidentiality, and security, as well as ensuring that all parties receive value from participating. The core of successful data mosaic projects, we contend, is as much institutional and organizational as it is technical. As such, sustained efforts to fully engage and develop diverse, innovative communities are essential.more » « less