skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1760971

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Optimal cordon-metering rates are obtained using Macroscopic Fundamental Diagrams in combination with flow conservation laws. A model-predictive control algorithm is also used so that time-varying metering rates are generated based on their forecasted impacts. Our scalable algorithm can do this for an arbitrary number of cordoned neighborhoods within a city. Unlike its predecessors, the proposed model accounts for the time-varying constraining effects that cordon queues impose on a neighborhood’s circulating traffic, as those queues expand and recede over time. The model does so at every time step by approximating a neighborhood’s street space occupied by cordon queues, and re-scaling the MFD to describe the state of circulating traffic that results. The model also differentiates between saturated and under-saturated cordon-metering operations. Computer simulations of an idealized network show that these enhancements can substantially improve the predictions of both, the trip completion rates in a neighborhood and the rates that vehicles cross metered cordons. Optimal metering policies generated as a result are similarly shown to do a better job in reducing the Vehicle Hours Traveled on the network. The VHT reductions stemming from the proposed model and from its predecessors differed by as much as 14%. 
    more » « less
  2. The work explores how Reinforcement Learning can be used to re-time traffic signals around cordoned neighborhoods. An RL-based controller is developed by representing traffic states as graph-structured data and customizing corresponding neural network architectures to handle those data. The customizations enable the controller to: (i) model neighborhood-wide traffic based on directed-graph representations; (ii) use the representations to identify patterns in real-time traffic measurements; and (iii) capture those patterns to a spatial representation needed for selecting optimal cordon-metering rates. Input to the selection process also includes a total inflow to be admitted through a cordon. The rate is optimized in a separate process that is not part of the present work. Our RL-controller distributes that separately-optimized rate across the signalized street links that feed traffic through the cordon. The resulting metering rates vary from one feeder link to the next. The selection process can reoccur at short time intervals in response to changing traffic patterns. Once trained on a few cordons, the RL-controller can be deployed on cordons elsewhere in a city without additional training. This portability feature is confirmed via simulations of traffic on an idealized street network. The tests also indicate that the controller can reduce the network’s vehicle hours traveled well beyond what can be achieved via spatially-uniform cordon metering. The extra reductions in VHT are found to grow larger when traffic exhibits greater in-homogeneities over the network. 
    more » « less