Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This work focuses on topology optimization formulations with linear buckling constraints wherein eigenvalues of arbitrary multiplicities can be canonically considered. The non‐differentiability of multiple eigenvalues is addressed by a mean value function which is a symmetric polynomial of the repeated eigenvalues in each cluster. This construction offers accurate control over each cluster of eigenvalues as compared to the aggregation functions such as ‐norm and Kreisselmeier–Steinhauser (K–S) function where only approximate maximum/minimum value is available. This also avoids the two‐loop optimization procedure required by the use of directional derivatives (Seyranian et al.Struct Optim. 1994;8(4):207‐227.). The spurious buckling modes issue is handled by two approaches—one with different interpolations on the initial stiffness and geometric stiffness and another with a pseudo‐mass matrix. Using the pseudo‐mass matrix, two new optimization formulations are proposed for incorporating buckling constraints together with the standard approach employing initial stiffness and geometric stiffness as two ingredients within generalized eigenvalue frameworks. Numerical results show that all three formulations can help to improve the stability of the optimized design. In addition, post‐nonlinear stability analysis on the optimized designs reveals that a higher linear buckling threshold might not lead to a higher nonlinear critical load, especially in cases when the pre‐critical response is nonlinear.more » « less
-
Summary This study focuses on the topology optimization framework for the design of multimaterial dissipative systems at finite strains. The overall goal is to combine a soft viscoelastic material with a stiff hyperelastic material for realizing optimal structural designs with tailored damping and stiffness characteristics. To this end, several challenges associated with incorporating finite‐deformation viscoelastic‐hyperelastic materials in a multimaterial design framework are addressed. This includes consideration of a thermodynamically consistent finite‐strain viscoelasticity model for simulating energy dissipation together with F‐bar finite elements for handling material incompressibility. Moreover, an effective multimaterial interpolation scheme is proposed, which preserves the physics of material mixtures in the context of density‐based topology optimization. A numerically accurate analytical design sensitivity calculation is also presented using a path‐dependent adjoint method. Furthermore, both prescribed‐load and prescribed‐displacement boundary conditions are considered in the optimization formulations, together with various strategies for controlling stiffness. As demonstrated by the numerical examples, the use of the stiffer hyperelastic material phase in a design not only improves stiffness but also increases energy dissipation capacity. Moreover, with the finite‐deformation theory, the effect of the loading magnitude on the optimized designs can be observed.more » « less
An official website of the United States government
