skip to main content


Search for: All records

Award ID contains: 1762712

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Unparalleled temporal and spatial control of colloidal chemical processes introduces immense potential for the manufacturing, modification, and manipulation of latex particles. This review highlights major advances in photochemistry, both as stimulus and response, to generate unprecedented functionality in polymer colloids. Light-based chemical modification generates polymer particles with unique structural complexity, and the incorporation of photoactive functionalities transforms inert particles into photoactive nanodevices. Latex photo-functionality, which is reflected in both the colloidal and coalesced states, enables photochromism, photoswitchable aggregation, tunable fluorescence, photoactivated crosslinking and solidification, and photomechanical actuation. Previous literature explores the capacity of photochemistry, which complements the rheological and processing advantages of latex, to expand beyond traditional coatings applications and enable disruptive technologies in critical areas including nanomedicine, data security, and additive manufacturing. 
    more » « less
  2. null (Ed.)