skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1762971

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Complex ferromagnetic oxides have been identified as possible candidate materials for sources of spin currents. Here we study bilayers of ferromagnetic (La2/3Sr1/3)MnO3 (LSMO) and metallic CaRuO3 (CRO) on LSAT substrates as a model system for spin pumping. Ferromagnetic resonance (FMR) measurements of these bilayers show evidence of spin pumping across the interface in the form of an increase in Gilbert damping with the addition of CRO. FMR indicates that the presence of CRO modifies the magnetic anisotropy of the LSMO. By increasing CRO thickness, we find a reduction of the out-of-plane anisotropy and simultaneous rotation of the easy axis within the plane, from the ⟨110⟩ to ⟨100⟩ axis. The evolution of magnetic anisotropy determined by FMR disagrees with that measured by bulk SQUID magnetometry and is accompanied by structural distortions in the LSMO layer as measured by x-ray diffraction, thus suggesting a change in magnetic anisotropy attributed to structural distortions imposed on LSMO by CRO. These results suggest that while LSMO and CRO remain promising candidates for efficient pure spin current generation and detection, respectively, epitaxial integration of perovskites will cause additional changes which must be accounted for in spintronics applications. 
    more » « less
  2. Oxygen deficiency has been known to induce metallic conduction in bulk and thin film SrTiO3 (STO). Here, we report on the metallicity of STO substrates induced by the pulsed laser deposition (PLD) process of STO films under various oxygen-poor growth conditions. Depositions as short as 2 min result in conduction through the STO substrate. Films grown on other substrates are insulating, and STO substrates annealed under the same growth conditions without laser ablation remain insulating. By varying background gas composition during deposition, we find that the transport behavior transitions from metallic to insulating behavior at progressively higher ambient pressures for O2, 99% N2/1% O2, N2, and Ar. Metallic behavior persists to deposition pressures as high as 10−2 Torr in Ar. These results suggest that, during the PLD process, the deposition kinetics and plume energy are a dominant factor in the formation of oxygen vacancies which then diffuse into the substrate. Understanding these mechanisms is crucial to prevent STO substrate reduction during PLD of films which require low O2 partial pressures during growth. 
    more » « less