skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1763512

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Router configurations are complex, so misconfigurations are common and hard to pinpoint. Existing configuration verifiers have several drawbacks. Consequently, we design a three stage heuristic to represent a wide range of components and relationships from a network's raw configurations as a graph, and we infer which of the aforementioned components refer to each other often by finding cycles in the graph. Deviations from frequently occurring cycles are considered misconfigurations. 
    more » « less
  2. Network verification often requires analyzing properties across different spaces (header space, failure space, or their product) under different failure models (deterministic and/or probabilistic). Existing verifiers efficiently cover the header or failure space, but not both, and efficiently reason about deterministic or probabilistic failures, but not both. Consequently, no single verifier can support all analyses that require different space coverage and failure models. This paper introduces Symbolic Router Execution (SRE), a general and scalable verification engine that supports various analyses. SRE symbolically executes the network model to discover what we call packet failure equivalence classes (PFECs), each of which characterises a unique forwarding behavior across the product space of headers and failures. SRE enables various optimizations during the symbolic execution, while remaining agnostic of the failure model, so it scales to the product space in a general way. By using BDDs to encode symbolic headers and failures, various analyses reduce to graph algorithms (e.g., shortest-path) on the BDDs. Our evaluation using real and synthetic topologies show SRE achieves better or comparable performance when checking reachability, mining specifications, etc. compared to state-of-the-art methods. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. Today's distributed network control planes are highly sophisticated, with multiple interacting protocols operating at layers 2 and 3. The complexity makes network configurations highly complex and bug-prone. State-of-the-art tools that check if control plane bugs can lead to violations of key properties are either too slow, or do not model common network features. We develop a new, general multilayer graph control plane model that enables using fast, property-customized verification algorithms. Our tool, Tiramisu can verify if policies hold under failures for various real-world and synthetic configurations in < 0.08s in small networks and < 2.2s in large networks. Tiramisu is 2-600X faster than state-of-the-art without losing generality. 
    more » « less