skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1764029

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We show that the Abraham–Rubin–Shelah Open Coloring Axiom is consistent with a large continuum, in particular, consistent with [Formula: see text]. This answers one of the main open questions from [U. Abraham, M. Rubin and S. Shelah, On the consistency of some partition theorems for continuous colorings, and the structure of [Formula: see text]-dense real order types, Ann. Pure Appl. Logic 325(29) (1985) 123–206]. As in [U. Abraham, M. Rubin and S. Shelah, On the consistency of some partition theorems for continuous colorings, and the structure of [Formula: see text]-dense real order types, Ann. Pure Appl. Logic 325(29) (1985) 123–206], we need to construct names for the so-called preassignments of colors in order to add the necessary homogeneous sets. However, the known constructions of preassignments (ours in particular) only work assuming the [Formula: see text]. In order to address this difficulty, we show how to construct such names with very strong symmetry conditions. This symmetry allows us to combine them in many different ways, using a new type of poset called a partition product. Partition products may be thought of as a restricted memory iteration with stringent isomorphism and coherent-overlap conditions on the memories. We finally construct, in [Formula: see text], the partition product which gives us a model of [Formula: see text] in which [Formula: see text]. 
    more » « less
  2. Abstract We present an alternative proof that from large cardinals, we can force the tree property at $$\kappa ^+$$ and $$\kappa ^{++}$$ simultaneously for a singular strong limit cardinal $$\kappa $$ . The advantage of our method is that the proof of the tree property at the double successor is simpler than in the existing literature. This new approach also works to establish the result for $$\kappa =\aleph _{\omega ^2}$$ . 
    more » « less