skip to main content


Search for: All records

Award ID contains: 1800108

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bis(phthalocyaninato)lanthanoid( iii ) (LnPc 2 ) complexes have attracted significant attention for their exceptional optical, electronic and magnetic properties. Crystallization of these compounds usually requires cumbersome methods such as sublimation and electrocrystallization, which is a significant limitation to both structural determinations and the preparation of high purity materials at scale. We report here the selective crystallization of four polymorphs of LnPc 2 obtained exclusively by the slow evaporation of saturated solutions. The obtained phase depends on the initial oxidation state of the LnPc 2 molecule and the choice of solvent. Single-crystal X-ray diffraction studies were used to determine 14 new structures including Ln = La, Pr, Nd, Sm, Gd, Tb, Dy, Er and Yb, as well as correct previous mis-identifications from the literature. We provide a detailed comparison of molecular structure and crystal packing in all LnPc 2 polymorphs. The primary feature in all phases is columnar stacking based on parallel π–π interactions, with a variety of slip angles within those stacks as well as secondary interactions between them. Chemical redox and acid–base titrations, performed on re-dissolved crystals demonstrate that LnPc 2 + and LnPc 2 − are easily obtained through weak oxidizing and reducing agents, respectively. Additionally, we show that the protonated form of the NdPc 2 − complex has a nearly identical UV-vis spectrum to that of neutral NdPc 2 , explaining some of the confusion over chemical composition in previously published literature. 
    more » « less