Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A photoredox/cobalt dual catalytic procedure has been developed that allows benzoylation of olefins. Here the photoredox catalyst effects the decarboxylation of α‐ketoacids to form benzoyl radicals. After addition of this radical to styrenes, the cobalt catalyst abstracts a H‐atom. Hydrogen evolution from the putative cobalt hydride intermediate allows a Heck‐like aroylation without the need for a stoichiometric oxidant. Mechanistic studies reveal that electronically different styrenes lead to a curved Hammett plot, thus suggesting a change in product‐determining step in the catalytic mechanism.more » « less
-
Abstract Since early focus on development of the allylation of non‐stabilized enolates, decarboxylative allylation has undergone tremendous evolution. This account describes the progression of decarboxylative allylation within the Tunge group with a focus on efforts to identify and overcome pKarequirements that initially limited the carboxylates that would undergo decarboxylative allylation.more » « less
-
Recently, dual catalytic strategies towards the decarboxylative elimination of carboxylic acids have gained attention. Our lab previously reported a photoredox/cobaloxime dual catalytic method that allows the synthesis of enamides and enecarbamates directly from N ‐acyl amino acids that avoids the use of any stoichiometric reagents. Further development, detailed herein, has improved upon this transformation’s utility and further experimentation has provided new insights into the reaction mechanism. These new developments and insights are anticipated to aid in the expansion of photoredox/cobalt dual catalytic systems.more » « less
-
A dual catalytic decarboxylative allylation and benzylation method for the construction of new C(sp 3 )–C(sp 3 ) bonds between readily available carboxylic acids and functionally diverse carbonate electrophiles has been developed. The new process is mild, operationally simple, and has greatly improved upon the efficiency and generality of previous methodology. In addition, new insights into the reaction mechanism have been realized and provide further understanding of the harnessed reactivity.more » « less
An official website of the United States government
