Activation of the dinitrogen triple bond is a crucial step in the overall fixation of atmospheric nitrogen into usable forms for industrial and biological applications. Current synthetic catalysts incorporate metal ions to facilitate the activation and cleavage of dinitrogen. The high price of metal‐based catalysts and the challenge of catalyst recovery during industrial catalytic processes has led to increasing interest in metal‐free catalysts. One step toward metal‐free catalysis is the use of frustrated Lewis pairs (FLPs). In this study, we have examined 18 functionalized carbenes as FLPs to elucidate the influence of steric and electronic effects on the activation of dinitrogen. To test the effects of functionalization on dinitrogen activation, we have performed density functional theory (DFT), multireference, non and extended transition state‐natural orbital for chemical valence (ETS‐NOCV) calculations. Our results suggest that functional groups which introduce strong electron‐withdrawing effects and/or engage in extended π/π* systems lead to the lowering of the dissociation energy of the dinitrogen bond, which further contributes to greater nitrogen activation. We conjecture that these effects are due to enhanced back‐bonding capability of the p orbital of the carbene carbon atoms to the adjacent nitrogen atoms (increasing Lewis basicity of the carbene carbon atom) and enhanced stability of dissociated products. Our concluding remarks include opportunities to extend this activation study to explore the entire catalytic cycle with promising functionalized carbenes for experimental evaluation.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Three five‐coordinate iron(IV) imide complexes have been synthesized and characterized. These novel structures have disparate spin states on the iron as a function of the R‐group attached to the imide, with alkyl groups leading to low‐spin diamagnetic (
S =0) complexes and an aryl group leading to an intermediate‐spin (S =1) complex. The different spin states lead to significant differences in the bonding about the iron center as well as the spectroscopic properties of these complexes. Mössbauer spectroscopy confirmed that all three imide complexes are in the iron(IV) oxidation state. The combination of diamagnetism and15N labeling allowed for the first15N NMR resonance recorded on an iron imide. Multi‐reference calculations corroborate the experimental structural findings and suggest how the bonding is distinctly different on the imide ligand between the two spin states.