skip to main content

Search for: All records

Award ID contains: 1800313

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
    The synthesis and characterization of a series of Sn( ii ) and Sn( iv ) complexes supported by the highly electron-withdrawing dianionic perfluoropinacolate (pin F ) ligand are reported herein. Three analogs of [Sn IV (pin F ) 3 ] 2− with NEt 3 H + ( 1 ), K + ( 2 ), and {K(18C6)} + ( 3 ) counter cations and two analogs of [Sn II (pin F ) 2 ] 2− with K + ( 4 ) and {K(15C5) 2 } + ( 5 ) counter cations were prepared and characterized by standard analytical methods, single-crystal X-ray diffraction, and 119 Sn Mössbauer and NMR spectroscopies. The six-coordinate Sn IV (pin F ) complexes display 119 Sn NMR resonances and 119 Sn Mössbauer spectra similar to SnO 2 (cassiterite). In contrast, the four-coordinate Sn II (pin F ) complexes, featuring a stereochemically-active lone pair, possess low 119 Sn NMR chemical shifts and relatively high quadrupolar splitting. Furthermore, the Sn( ii ) complexes are unreactive towards both Lewis bases (pyridine, NEt 3 ) and acids (BX 3 , Et 3 NH + ). Calculations confirm that the Sn( ii ) lone pair is localized within the 5s orbital and reveal that the Sn 5p x LUMO is energetically inaccessible, which effectively abates reactivity. 
    more » « less
  4. Four groups of rare-earth complexes, comprising 11 new compounds, with fluorinated O-donor ligands ([K(THF)6][Ln(OC4F9)4(THF)2] (1-Ln; Ln = Ce, Nd), [K](THF)x[Ln(OC4F9)4(THF)y] (2-Ln; Ln = Eu, Gd, Dy), [K(THF)2][Ln(pinF)2(THF)3] (3-Ln; Ln = Ce, Nd), and [K(THF)2][Ln(pinF)2(THF)2] (4-Ln; Ln = Eu, Gd, Dy, Y) have been synthesized and characterized. Single-crystal X-ray diffraction data were collected for all compounds except 2-Ln. Species 1-Ln, 3-Ln, and 4-Ln are uncommon examples of six-coordinate (Eu, Gd, Dy, and Y) and seven-coordinate (Ce and Nd) LnIII centers in all-O-donor environments. Species 1-Ln, 2-Ln, 3-Ln, and 4-Ln are all luminescent (except where Ln = Gd and Y), with the solid-state emission of 1-Ce being exceptionally blue-shifted for a Ce complex. The emission spectra of the six Nd, Eu, and Dy complexes do not show large differences based on the ligand and are generally consistent with the well-known free-ion spectra. Time-dependent density functional theory results show that 1-Ce and 3-Ce undergo allowed 5f → 4d excitations, consistent with luminescence lifetime measurements in the nanosecond range. Eu-containing 2-Eu and 4-Eu, however, were found to have luminescence lifetimes in the millisecond range, indicating phosphorescence rather than fluorescence. The performance of a pair of multireference models for prediction of the Ln = Nd, Eu, and Dy absorption spectra was assessed. It was found that spectroscopy-oriented configuration interaction as applied to a simplified model in which the free-ion lanthanide was embedded in ligand-centered Löwdin point charges performed as well (Nd) or better (Eu and Dy) than canonical NEVPT2 calculations, when the ligand orbitals were included in the treatment. 
    more » « less
  5. A Cu( i ) fully fluorinated O-donor monodentate alkoxide complex, K[Cu(OC 4 F 9 ) 2 ], was previously shown to form a trinuclear copper–dioxygen species with a {Cu 3 (μ 3 -O) 2 } core, T OC4F9 , upon reactivity with O 2 at low temperature. Herein is reported a significantly expanded kinetic and mechanistic study of T OC4F9 formation using stopped-flow spectroscopy. The T OC4F9 complex performs catalytic oxidase conversion of hydroquinone (H 2 Q) to benzoquinone (Q). T OC4F9 also demonstrated hydroxylation of 2,4-di- tert -butylphenolate (DBP) to catecholate, making T OC4F9 the first trinuclear species to perform tyrosinase (both monooxygenase and oxidase) chemistry. Resonance Raman spectra were also obtained for T OC4F9 , to our knowledge, the first such spectra for any T species. The mechanism and substrate reactivity of T OC4F9 are compared to those of its bidentate counterpart, T pinF , formed from K[Cu(pin F )(PR 3 )]. The monodentate derivative has both faster initial formation and more diverse substrate reactivity. 
    more » « less
  6. Investigation of Cu–O 2 oxidation reactivity is important in biological and anthropogenic chemistry. Zeolites are one of the most promising Cu/O based oxidation catalysts for development of industrial-scale CH 4 to CH 3 OH conversion. Their oxidation mechanisms are not well understood, however, highlighting the importance of the investigation of molecular Cu( i )–O 2 reactivity with O-donor complexes. Herein, we give an overview of the synthesis, structural properties, and O 2 reactivity of three different series of O-donor fluorinated Cu( i ) alkoxides: K[Cu(OR) 2 ], [(Ph 3 P)Cu(μ-OR) 2 Cu(PPh 3 )], and K[(R 3 P)Cu(pin F )], in which OR = fluorinated monodentate alkoxide ligands and pin F = perfluoropinacolate. This breadth allowed for the exploration of the influence of the denticity of the ligand, coordination number, the presence of phosphine, and K⋯F/O interactions on their O 2 reactivity. K⋯F/O interactions were required to activate O 2 in the monodentate-ligand-only family, whereas these connections did not affect O 2 activation in the bidentate complexes, potentially due to the presence of phosphine. Both families formed trisanionic, trinuclear cores of the form {Cu 3 (μ 3 -O) 2 } 3− . Intramolecular and intermolecular substrate oxidation were also explored and found to be influenced by the fluorinated ligand. Namely, {Cu 3 (μ 3 -O) 2 } 3− from K[Cu(OR) 2 ] could perform both monooxygenase reactivity and oxidase catalysis, whereas those from K[(R 3 P)Cu(pin F )] could only perform oxidase catalysis. 
    more » « less
  7. Oxidation of distorted square-planar perfluoropinacolate Co compound [Co II (pin F ) 2 ] 2− , 1 , to [Co III (pin F ) 2 ] 1− , 2 , is reported. Rigidly square-planar 2 has an intermediate-spin, S = 1, ground state and very large zero-field splitting (ZFS) with D = 67.2 cm −1 ; | E | = 18.0 cm −1 , ( E / D = 0.27), g ⊥ = 2.10, g ‖ = 2.25 and χ TIP = 1950 × 10 −6 cm 3 mol −1 . This Co( iii ) species, 2 , reacts with ROS to oxidise two (pin F ) 2− ligands to form tetrahedral [Co II (Hpfa) 4 ] 2− , 3 . 
    more » « less