For any finite horizon Sinai billiard map
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
on the two-torus, we find\begin{document}$ T $\end{document} such that for each\begin{document}$ t_*>1 $\end{document} there exists a unique equilibrium state\begin{document}$ t\in (0,t_*) $\end{document} for\begin{document}$ \mu_t $\end{document} , and\begin{document}$ - t\log J^uT $\end{document} is\begin{document}$ \mu_t $\end{document} -adapted. (In particular, the SRB measure is the unique equilibrium state for\begin{document}$ T $\end{document} .) We show that\begin{document}$ - \log J^uT $\end{document} is exponentially mixing for Hölder observables, and the pressure function\begin{document}$ \mu_t $\end{document} is analytic on\begin{document}$ P(t) = \sup_\mu \{h_\mu -\int t\log J^uT d \mu\} $\end{document} . In addition,\begin{document}$ (0,t_*) $\end{document} is strictly convex if and only if\begin{document}$ P(t) $\end{document} is not\begin{document}$ \log J^uT $\end{document} -a.e. cohomologous to a constant, while, if there exist\begin{document}$ \mu_t $\end{document} with\begin{document}$ t_a\ne t_b $\end{document} , then\begin{document}$ \mu_{t_a} = \mu_{t_b} $\end{document} is affine on\begin{document}$ P(t) $\end{document} . An additional sparse recurrence condition gives\begin{document}$ (0,t_*) $\end{document} .\begin{document}$ \lim_{t\downarrow 0} P(t) = P(0) $\end{document} -
We consider multimodal maps with holes and study the evolution of the open systems with respect to equilibrium states for both geometric and Hölder potentials. For small holes, we show that a large class of initial distributions share the same escape rate and converge to a unique absolutely continuous conditionally invariant measure; we also prove a variational principle connecting the escape rate to the pressure on the survivor set, with no conditions on the placement of the hole. Finally, introducing a weak condition on the centre of the hole, we prove scaling limits for the escape rate for holes centred at both periodic and non-periodic points, as the diameter of the hole goes to zero.