Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract 1D materials, such as nanofibers or nanoribbons are considered as the future ultimate limit of downscaling for modern electrical and electrochemical devices. Here, for the first time, nanofibers of a solid solution transition metal trichalcogenide (TMTC), Nb1‐xTaxS3, are successfully synthesized with outstanding electrical, thermal, and electrochemical characteristics rivaling the performance of the‐state‐of‐the art materials for each application. This material shows nearly unchanged sheet resistance (≈740 Ω sq−1) versus bending cycles tested up to 90 cycles, stable sheet resistance in ambient conditions tested up to 60 days, remarkably high electrical breakdown current density of ≈30 MA cm−2, strong evidence of successive charge density wave transitions, and outstanding thermal stability up to ≈800 K. Additionally, this material demonstrates excellent activity and selectivity for CO2conversion to CO reaching ≈350 mA cm−2at −0.8 V versus RHE with a turnover frequency number of 25. It also exhibits an excellent performance in a high‐rate Li–air battery with the specific capacity of 3000 mAh g−1at a current density of 0.3 mA cm−2. This study uncovers the multifunctionality in 1D TMTC alloys for a wide range of applications and opens a new direction for the design of the next generation low‐dimensional materials.more » « less
-
Abstract High‐entropy alloys combine multiple principal elements at a near equal fraction to form vast compositional spaces to achieve outstanding functionalities that are absent in alloys with one or two principal elements. Here, the prediction, synthesis, and multiscale characterization of 2D high‐entropy transition metal dichalcogenide (TMDC) alloys with four/five transition metals is reported. Of these, the electrochemical performance of a five‐component alloy with the highest configurational entropy, (MoWVNbTa)S2, is investigated for CO2conversion to CO, revealing an excellent current density of 0.51 A cm−2and a turnover frequency of 58.3 s−1at ≈ −0.8 V versus reversible hydrogen electrode. First‐principles calculations show that the superior CO2electroreduction is due to a multi‐site catalysis wherein the atomic‐scale disorder optimizes the rate‐limiting step of CO desorption by facilitating isolated transition metal edge sites with weak CO binding. 2D high‐entropy TMDC alloys provide a materials platform to design superior catalysts for many electrochemical systems.more » « less
-
Abstract Metal–organic frameworks (MOFs) are promising materials for electrocatalysis; however, lack of electrical conductivity in the majority of existing MOFs limits their effective utilization in the field. Herein, an excellent catalytic activity of a 2D copper (Cu)‐based conductive MOF, copper tetrahydroxyquinone (CuTHQ), is reported for aqueous CO2reduction reaction (CO2RR) at low overpotentials. It is revealed that CuTHQ nanoflakes (NFs) with an average lateral size of 140 nm exhibit a negligible overpotential of 16 mV for the activation of this reaction, a high current density of ≈173 mA cm−2at −0.45 V versus RHE, an average Faradaic efficiency (F.E.) of ≈91% toward CO production, and a remarkable turnover frequency as high as ≈20.82 s−1. In the low overpotential range, the obtained CO formation current density is more than 35 and 25 times higher compared to state‐of‐the‐art MOF and MOF‐derived catalysts, respectively. The operando Cu K‐edge X‐ray absorption near edge spectroscopy and density functional theory calculations reveal the existence of reduced Cu (Cu+) during CO2RR which reversibly returns to Cu2+after the reaction. The outstanding CO2catalytic functionality of conductive MOFs (c‐MOFs) can open a way toward high‐energy‐density electrochemical systems.more » « less
An official website of the United States government
