skip to main content


Search for: All records

Award ID contains: 1800586

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Addition of the bipyridyl‐embedded cycloparaphenylene nanohoop bipy[9]CPP to [Fe{H2B(pyz)2}] (pyz=pyrazolyl) produces the distorted octahedral complex [Fe(bipy[9]CPP){H2B(pyz)2}2] (1). The molecular structure of1shows that the nanohoop ligand contains a non‐planar bipy unit. Magnetic susceptibility measurements indicate spin‐crossover (SCO) behaviour with aT1/2of 130 K, lower than that of 160 K observed with the related compound [Fe(bipy){H2B(pyz)2}2] (2), which contains a conventional bipy ligand. A computational study of1and2reveals that the curvature of the nanohoop leads to the different SCO properties, suggesting that the SCO behaviour of iron(II) can be tuned by varying the size and diameter of the nanohoop.

     
    more » « less
  2. Abstract

    A new class of macrocyclic angle‐strained alkynes whose size and reactivity can be precisely tuned by modular organic synthesis is disclosed. Detailed analysis of the size‐dependent structural and electronic properties provides evidence for considerable distortion of the alkyne units incorporated into the cycloparaphenylene (CPP)‐derived macrocycles. The remarkable increase of the alkyne reactivity with decreasing macrocycle size in [2+2]cycloaddition–retrocyclization was investigated by joint experimental and theoretical studies and the thermodynamic and kinetic parameters that govern this reaction were unraveled. Additionally, even the largest, least strained macrocycle in this series was found to undergo strain‐promoted azide–alkyne cycloaddition (SPAAC) efficiently under mild conditions, thereby paving the way to the application of alkyne‐containing CPPs as fluorescent “clickable” macrocyclic architectures.

     
    more » « less
  3. null (Ed.)
    The consequences of four-electron addition to [8]cycloparaphenylene ([8]CPP, 1 ) have been evaluated crystallographically, revealing a significant core deformation. The structural analysis exposes an elliptical distortion observed upon electron transfer, with the deformation parameter (D.P.) increased by 28% in comparison with neutral [8]CPP. The C–C bond length alteration pattern also indicates a quinoidal structural rearrangement upon four-fold reduction. The large internal cavity of [8]CPP 4− allows the encapsulation of two {K + (THF) 2 } cationic moieties with two additional cations bound externally in the solid-state structure of [{K + (THF) 2 } 4 ([8]CPP 4− )]. The experimental structural data have been used as a benchmark for the comprehensive theoretical description of the geometric changes and electronic properties of the highly-charged [8]CPP 4− nanohoop in comparison with its neutral parent. While neutral [8]CPP and the [8]CPP 2− anion clearly show aromatic behavior of all six-membered rings, subsequent addition of two more electrons completely reverses their aromatic character to afford the highly-antiaromatic [8]CPP 4− anion, as evidenced by structural, topological, and magnetic descriptors. The disentanglement of electron transfer from metal binding effects allowed their contributions to the overall core perturbation of the negatively-charged [8]CPP to be revealed. Consequently, the internal coordination of potassium cations is identified as the main driving force for drastic elliptic distortion of the macrocyclic framework upon reduction. 
    more » « less
  4. Cycloparaphenylenes have promise as novel fluorescent materials. However, shifting their fluorescence beyond 510 nm is difficult. Herein, we computationally explore the effect of incorporating electron accepting and electron donating units on CPP photophysical properties at the CAM-B3LYP/6-311G** level. We demonstrate that incorporation of donor and acceptor units may shift the CPP fluorescence as far as 1193 nm. This computational work directs the synthesis of bright red-emitting CPPs. Furthermore, the nanohoop architecture allows for interrogation of strain effects on common conjugated polymer donor and acceptor units. Strain results in a bathochromic shift versus linear variants, demonstrating the value of using strain to push the limits of low band gap materials. 
    more » « less
  5. null (Ed.)
    Chemical reduction of several cycloparaphenylenes (CPPs) ranging in size from [8]CPP to [12]CPP has been investigated with potassium metal in THF. The X-ray diffraction characterization of the resulting doubly-reduced [ n ]CPPs provided a unique series of carbon nanohoops with increasing dimensions and core flexibility for the first comprehensive structural analysis. The consequences of electron acquisition by a [ n ]CPP core have been analyzed in comparison with the neutral parents. The addition of two electrons to the cyclic carbon framework of [ n ]CPPs leads to the characteristic elliptic core distortion and facilitates the internal encapsulation of sizable cationic guests. Molecular and solid-state structure changes, alkali metal binding and unique size-dependent host abilities of the [ n ]CPP 2− series with n = 6–12 are discussed. This in-depth analysis opens new perspectives in supramolecular chemistry of [ n ]CPPs and promotes their applications in size-selective guest encapsulation and chemical separation. 
    more » « less
  6. Conjugated aromatic macrocycles are attractive due to their unique photophysical and optoelectronic properties. In particular, the cyclic radially oriented π‐system of cycloparaphenylenes (CPPs) gives rise to photophysical properties unlike any other small molecule or carbon nanomaterial. CPPs have tunable emission, possess large extinction coefficients, wide effective Stokes shifts, and high quantum yields. However, accessing bright CPPs with emissions beyond 500 nm remains difficult. Herein, we present a novel and bright orange‐emitting CPP‐based fluorophore showing a dramatic 105 nm red‐shift in emission and striking 237 nm effective Stokes shift while retaining a large quantum yield of 0.59. We postulate, and experimentally and theoretically support, that the quantum yield remains large due to the lack of intramolecular charge transfer. 
    more » « less
  7. Strain has a unique and sometimes unpredictable impact on the properties and reactivity of molecules. To thoroughly describe strain in molecules, a computational tool that relates strain energy to reactivity by localizing and quantifying strain was developed. Strain energy is calculated local to every coordinate in the molecule and areas of higher strain are shown experimentally to be more reactive. Not only does this tool directly compare strain energy in parts of the same molecule, but it also computes total strain to give a full picture of molecular strain energy. It is freely available to the public on GitHub under the name StrainViz and much of the workflow is automated to simplify use for non-experts. Unique insight into the reactivity of curved aromatic molecules and strained alkyne bioorthogonal reagents is described within. 
    more » « less
  8. Molecules and materials that demonstrate large amplitude responses to minor changes in their local environment play an important role in the development of new forms of nanotechnology. Molecular daisy chains are a type of a mechanically interlocked molecule that are particularly sensitive to such changes in which, in the presence of certain stimuli, the molecular linkage enables muscle‐like movement between a reduced‐length contracted form and an increased‐length expanded form. To date, all reported syntheses of molecular daisy chains are accomplished via passive‐template methods, resulting in a majority of structures being switchable only through the addition of an exogenous stimuli such as metal ions or changes in pH. Here, we describe a new approach to these structural motifs that exploits a multi‐component active‐metal template synthesis to mechanically interlock two pi‐rich nanohoop macrocycles into a molecular daisy chain that undergoes large conformational changes using thermal energy. 
    more » « less