skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1800854

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synthesis of Tetraarylphosphonium/Tetrakis(pentafluorophenyl)borate (TAPR/TFAB, R=1,2,3-TriOMe, and R=3,5-DiOme) salts as Non-aqueous Electrolytes for Organic Redox Flow Batteries. 
    more » « less
  2. Multigram quantity of a novel Sulfa Drug complex -poly(amido)amine-sulfonamide or PAMAM-Sulfa- was synthesized, from commercially available materials. It was characterized with spectroscopic methods such as nuclear magnetic resonance (NMR). The Kirby-Bauer test was used to test it against gram positive and/or gram negative bacteria using different concentrations of an ethanol solution of the PAMAM-Sulfa complex. The goal of this experiment was to synthesize and study the effect of water soluble encapsulated sulfonamides on common bacteria by undergraduate students engaging in research involving more than one STEM discipline. Students synthesized a dendrimer-sulfonamide complex before evaluating its antibiotic properties. In doing so, students employed research methods that are common to chemistry, biology and nanoscience while also learning about mechanism of infectious diseases, drugs and drug resistance. This project allowed students to combine aspects of scientific research that are usually done separately, and an opportunity to observe the seamlessness of multidisciplinary science. 
    more » « less
  3. A series of weakly coordinating cations/anions (TAPR/TFAB) ion pairs are, herein, being proposed as non-aqueous electrolytes for high capacity ORFBs. These were accessed via a Palladiumcatalyzed approach followed by the simple filtration/isolation of the product. These substituted tetraarylphosphonium/tetrakis(pentafluorophenyl)borate salts 1-4 where the substituents are a pmethoxy (1), a 3,4-dimethoxy (2), a p-phenyl (3), and a p-trimethylsilylacetylene (TMSA) (4) have potential use in several industries owing to their unique solubility in low polarity solvents. These salts constitute a new class of molecular ion pairs which can promote charge dissociation even in low polarity solvents because of their large size and bulkiness. The result being an increased conductivity in those media that can be useful for electrochemistry, advances in catalysis, battery technology, petroleum handling etc. This work supports the national security goal of fostering the development of affordable, clean and renewable energy source and storage. 
    more » « less