skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1802241

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We construct a co- t t -structure on the derived category of coherent sheaves on the nilpotent cone N \mathcal {N} of a reductive group, as well as on the derived category of coherent sheaves on any parabolic Springer resolution. These structures are employed to show that the push-forwards of the “exotic parity objects” (considered by Achar, Hardesty, and Riche [Transform. Groups 24 (2019), pp. 597–657]), along the (classical) Springer resolution, give indecomposable objects inside the coheart of the co- t t -structure on N \mathcal {N} . We also demonstrate how the various parabolic co- t t -structures can be related by introducing an analogue to the usual translation functors. As an application, we give a proof of a scheme-theoretic formulation of the relative Humphreys conjecture on support varieties of tilting modules in type A A for p > h p>h
    more » « less