Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Two major earthquakes (MW7.8 and MW7.7) ruptured left-lateral strike-slip faults of the East Anatolian Fault Zone (EAFZ) on February 6, 2023, causing >59,000 fatalities and ~$119B in damage in southeastern Türkiye and northwestern Syria. Here we derived kinematic rupture models for the two events by inverting extensive seismic and geodetic observations using complex 5-6 segment fault models constrained by satellite observations and relocated aftershocks. The larger event nucleated on a splay fault, and then propagated bilaterally ~350 km along the main EAFZ strand. The rupture speed varied from 2.5-4.5 km/s, and peak slip was ~8.1 m. 9-h later, the second event ruptured ~160 km along the curved northern EAFZ strand, with early bilateral supershear rupture velocity (>4 km/s) followed by a slower rupture speed (~3 km/s). Coulomb Failure stress increase imparted by the first event indicates plausible triggering of the doublet aftershock, along with loading of neighboring faults.more » « less
-
Abstract Variations in fault zone maturity have intermittently been invoked to explain variations in some seismological observations for large earthquakes. However, the lack of a unified geological definition of fault maturity makes quantitative assessment of its importance difficult. We evaluate the degree of empirical correlation between geological and geometric measurements commonly invoked as indicative of fault zone maturity and remotely measured seismological source parameters of 34MW ≥ 6.0 shallow strike‐slip events. Metrics based on surface rupture segmentation, such as number of segments and surface rupture azimuth changes, correlate best with seismic source attributes while the correlations with cumulative fault slip are weaker. Average rupture velocity shows the strongest correlation with metrics of maturity, followed by relative aftershock productivity. Mature faults have relatively lower aftershock productivity and higher rupture velocity. A more complex relation is found with moment‐scaled radiated energy. There appears to be distinct behavior of very immature events which radiate modest seismic energy, while intermediate mature faults have events with higher moment‐scaled radiated energy and very mature faults with increasing cumulative slip tend to have events with reduced moment‐scaled radiated energy. These empirical comparisons establish that there are relationships between remote seismological observations and fault system maturity that can help to understand variations in seismic hazard among different fault environments and to assess the relative maturity of inaccessible or blind fault systems for which direct observations of maturity are very limited.more » « less
-
Abstract Foreshocks are the only currently widely identified precursory seismic behavior, yet their utility and even identifiability are problematic, in part because of extreme variation in behavior. Here, we establish some global trends that help identify the expected frequency of foreshocks as well the type of earthquake most prone to foreshocks. We establish these tendencies using the global earthquake catalog of the U.S. Geological Survey National Earthquake Information Center with a completeness level of magnitude 5 and mainshocks with Mw≥7.0. Foreshocks are identified using three clustering algorithms to address the challenge of distinguishing foreshocks from background activity. The methods give a range of 15%–43% of large mainshocks having at least one foreshock but a narrower range of 13%–26% having at least one foreshock with magnitude within two units of the mainshock magnitude. These observed global foreshock rates are similar to regional values for a completeness level of magnitude 3 using the same detection conditions. The foreshock sequences have distinctive characteristics with the global composite population b-values being lower for foreshocks than for aftershocks, an attribute that is also manifested in synthetic catalogs computed by epidemic-type aftershock sequences, which intrinsically involves only cascading processes. Focal mechanism similarity of foreshocks relative to mainshocks is more pronounced than for aftershocks. Despite these distinguishing characteristics of foreshock sequences, the conditions that promote high foreshock productivity are similar to those that promote high aftershock productivity. For instance, a modestly higher percentage of interplate mainshocks have foreshocks than intraplate mainshocks, and reverse faulting events slightly more commonly have foreshocks than normal or strike-slip-faulting mainshocks. The western circum-Pacific is prone to having slightly more foreshock activity than the eastern circum-Pacific.more » « less
-
Abstract The 2021MW6.0 Yangbi, Yunnan strike‐slip earthquake occurred on an unmapped crustal fault near the Weixi‐Qiaoho‐Weishan Fault along the southeast margin of the Tibetan Plateau. Using near‐source broadband seismic data from ChinArray, we investigate the spatial and temporal rupture evolution of the mainshock using apparent moment‐rate functions (AMRFs) determined by the empirical Green's function (EGF) method. Assuming a 1D line source on the fault plane, the rupture propagated unilaterally southeastward (∼144°) over a rupture length of ∼8.0 km with an estimated rupture speed of 2.1 km/s to 2.4 km/s. A 2D coseismic slip distribution for an assumed maximum rupture propagation speed of 2.2 km/s indicates that the rupture propagated to the southeast ∼8.0 km along strike and ∼5.0 km downdip with a peak slip of ∼2.1 m before stopping near the largest foreshock, where three bifurcating subfaults intersect. Using the AMRFs, the radiated energy of the mainshock is estimated as ∼. The relatively low moment scaled radiated energyof 1.5 × 10−5and intense foreshock and aftershock activity might indicate reactivation of an immature fault. The earthquake sequence is mainly distributed along a northwest‐southeast trend, and aftershocks and foreshocks are distributed near the periphery of the mainshock large‐slip area, suggesting that the stress in the mainshock slip zone is significantly reduced to below the level for more than a few overlapping aftershock to occur.more » « less
-
Abstract On 29 July 2021, anMW8.2 thrust‐faulting earthquake ruptured offshore of the Alaska Peninsula within the rupture zone of the 1938MW8.2 earthquake. The spatiotemporal distribution of megathrust slip is resolved by jointly inverting regional and teleseismic broadband waveforms along with co‐seismic static and high‐rate GNSS displacements. The primarily unilateral rupture expanded northeastward, away from the rupture zone of the 22 July 2020MW7.8 Shumagin earthquake. Large slip extends along approximately 175 km, spanning about two third of the estimated 1938 aftershock zone, with well‐bounded depth from 20 to 40 km, and up to 8.6 m slip near the hypocenter. The rupture terminated in the eastern portion of the 1938 aftershock zone in a region of very large geodetic slip deficit where peak slip appears to have occurred in the 1938 rupture. The 2021 and 1938 events do not have similar slip distributions and do not indicate persistent asperities.more » « less
-
Abstract A great earthquake struck the Semidi segment of the plate boundary along the Alaska Peninsula on 29 July 2021, re‐rupturing part of the 1938 rupture zone. The 2021MW8.2 Chignik earthquake occurred just northeast of the 22 July 2020MW7.8 Simeonof earthquake, with little slip overlap. Analysis of teleseismicPandSHwaves, regional Global Navigation Satellite System (GNSS) displacements, and near‐field and far‐field tsunami observations provides a good resolution of the 2021 rupture process. During ∼60‐s long faulting, the slip was nonuniformly distributed along the megathrust over depths from 32 to 40 km, with up to ∼12.9‐m slip in an ∼170‐km‐long patch. The 40–45 km down‐dip limit of slip is well constrained by GNSS observations along the Alaska Peninsula. Tsunami observations preclude significant slip from extending to depths <25 km, confining all coseismic slip to beneath the shallow continental shelf. Most aftershocks locate seaward of the large‐slip zones, with a concentration of activity up‐dip of the deeper southwestern slip zone. Some localized aftershock patches locate beneath the continental slope. The surface‐wave magnitudeMSof 8.1 for the 2021 earthquake is smaller thanMS = 8.3–8.4 for the 1938 event. Seismic and tsunami data indicate that slip in 1938 was concentrated in the eastern region of its aftershock zone, extending beyond the Semidi Islands, where the 2021 event did not rupture.more » « less
-
Abstract The Shumagin seismic gap along the Alaska Peninsula experienced a major,MW7.8, interplate thrust earthquake on 22 July 2020. Several available finite‐fault inversions indicate patchy slip of up to 4 m at 8–48 km depth. There are differences among the models in peak slip and absolute placement of slip on the plate boundary, resulting from differences in data distributions, model parameterizations, and inversion algorithms. Two representative slip models obtained from inversions of large seismic and geodetic data sets produce very different tsunami predictions at tide gauges and deep‐water pressure sensors (DART stations), despite having only secondary differences in slip distribution. This is found to be the result of the acute sensitivity of the tsunami excitation for rupture below the continental shelf in proximity to an abrupt shelf break. Iteratively perturbing seismic and geodetic inversions by constraining fault model extent along dip and strike, we obtain an optimal rupture model compatible with teleseismicPandSHwaves, regional three‐component broadband and strong‐motion seismic recordings, hr‐GNSS time series and static offsets, as well as tsunami recordings at DART stations and regional and remote tide gauges. Slip is tightly bounded between 25 and 40 km depth, the up‐dip limit of slip in the earthquake is resolved to be well‐inland of the shelf break, and the rupture extent along strike is well‐constrained. The coseismic slip increased Coulomb stress on the shallow plate boundary extending to the trench, but the frictional behavior of the megathrust below the continental slope remains uncertain.more » « less
-
Abstract The Kalapana, Hawaii,MW7.7 earthquake on November 29, 1975 generated a local tsunami with at least 14.3 m runup on the southeast shore of Hawaii Island adjacent to Kilauea Volcano. This was the largest locally generated tsunami since the great 1868 Ka'u earthquake located along‐shore to the southwest. Well‐recorded tide gauge and runup observations provide a key benchmark for studies of statewide tsunami hazards from actively deforming southeast Hawaii Island. However, the source process of the earthquake remains controversial, with coastal landsliding and/or offshore normal or thrust faulting mechanisms having been proposed to reconcile features of seismic, geodetic, and tsunami observations. We utilize these diverse observations for the 1975 Kalapana earthquake to deduce a compound faulting model that accounts for the overall tsunamigenesis, involving both landslide block faulting along the shore and slip on the island basal décollement. Thrust slip of 4.5–8.0 m on the offshore décollement produces moderate near‐field runup but controls the far‐field tsunami. The slip distribution implies that residual strain energy was available for the May 4, 2018MW7.2 thrust earthquake during the Kilauea‐East Rift Zone eruption. Local faulting below land contributes to geodetic and seismic observations, but is non‐tsunamigenic and not considered. Slip of 4–10 m on landslide‐like faults, which extend from the Hilina Fault Zone scarp to offshore shallowly dipping faults reaching near the seafloor, triples the near‐field tsunami runup. This compound model clarifies the roles of the faulting components in assessing tsunami hazards for the Hawaiian Islands.more » « less
-
Abstract The eastern portion of the Shumagin gap along the Alaska Peninsula ruptured in anMW7.8 thrust earthquake on 22 July 2020. The megathrust fault space‐time slip history is determined by joint inversion of regional and teleseismic waveform data along with co‐seismic static Global Navigation Satellite System (GNSS) displacements. The rupture expanded westward and along‐dip from the hypocenter, located adjacent to the 1938MW8.2 Alaska earthquake, with slip and aftershocks extending into the gap about 180 to 205 km, respectively, at depths from 15 to 40 km. The deeper half of ~75% of the Shumagin gap experienced faulting. However, the patchy slip is significantly less than possible accumulated slip since the region's last major rupture in 1917, compatible with geodetic seismic‐coupling estimates of 10‐40% beneath the Shumagin Islands. The rupture terminated in the western region of very low seismic coupling. There was a regional decade‐scale decrease in b‐value prior to the 2020 event.more » « less
-
Abstract The number of aftershocks increases with mainshock size following a well‐defined scaling law. However, excursions from the average behavior are common. This variability is particularly concerning for large earthquakes where the number of aftershocks varies by factors of 100 for mainshocks of comparable magnitude. Do observable factors lead to differences in aftershock behavior? We examine aftershock productivity relative to the global average for all mainshocks () from 1990 to 2019. A global map of earthquake productivity highlights the influence of tectonic regimes. Earthquake depth, lithosphere age, and plate boundary type correspond well with earthquake productivity. We investigate the role of mainshock attributes by compiling source dimensions, radiated seismic energy, stress drop, and a measure of slip heterogeneity based on finite‐fault source inversions for the largest earthquakes from 1990 to 2017. On an individual basis, stress drop, normalized rupture width, and aspect ratio most strongly correlate with aftershock productivity. A multivariate analysis shows that a particular set of parameters (dip, lithospheric age, and normalized rupture area) combines well to improve predictions of aftershock productivity on a cross‐validated data set. Our overall analysis is consistent with a model in which the volumetric abundance of nearby stressed faults controls the aftershock productivity rather than variations in source stress. Thus, we suggest a complementary approach to aftershock forecasts based on geological and rupture properties rather than local calibration alone.more » « less