skip to main content


Search for: All records

Award ID contains: 1802474

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Using data from the Environmental Protection Agency’s Chemical Speciation Network, we have characterized trends in PM2.5transition metals in urban areas across the United States for the period 2001–2016. The metals included in this analysis—Cr, Cu, Fe, Mn, Ni, V, and Zn—were selected based upon their abundance in PM2.5, known sources, and links to toxicity. Ten cities were included to provide broad geographic coverage, diverse source influences, and climatology: Atlanta (ATL), Baltimore (BAL), Chicago (CHI), Dallas (DAL), Denver (DEN), Los Angeles (LA), New York City (NYC), Phoenix (PHX), Seattle (SEA), and St. Louis (STL). The concentrations of V and Zn decreased in all ten cities, though the V decreases were more substantial. Cr concentrations increased in cities in the East and Midwest, with a pronounced spike in concentrations in 2013. The National Emissions Inventory was used to link sources with the observed trends; however, the causes of the broad Cr concentration increases and 2013 spike are not clear. Analysis of PM2.5metal concentrations in port versus non-port cities showed different trends for Ni, suggesting an important but decreasing influence of marine emissions. The concentrations of most PM2.5metals decreased in LA, STL, BAL, and SEA while concentrations of four of the seven metals (Cr, Fe, Mn, Ni) increased in DAL over the same time. Comparisons of the individual metals to overall trends in PM2.5suggest decoupled sources and processes affecting each. These metals may have an enhanced toxicity compared to other chemical species present in PM, so the results have implications for strategies to measure exposures to PM and the resulting human health effects.

     
    more » « less
  2. Transition metals in particulate matter (PM) are hypothesized to have enhanced toxicity based on their oxidative potential (OP). The acellular dithiothreitol (DTT) assay is widely used to measure the OP of PM and its chemical components. In our prior study, we showed that the DTT assay (pH 7.4, 0.1 M phosphate buffer, 37 °C) provides favorable thermodynamic conditions for precipitation of multiple metals present in PM. This study utilizes multiple techniques to characterize the precipitation of aqueous metals present at low concentrations in the DTT assay. Metal precipitation was identified using laser particle light scattering analysis, direct chemical measurement of aqueous metal removal, and microscopic imaging. Experiments were run with aqueous metals from individual metal salts and a well-characterized urban PM standard (NIST SRM-1648a, Urban Particulate Matter). Our results demonstrated rapid precipitation of metals in the DTT assay. Metal precipitation was independent of DTT but dependent on metal concentration. Metal removal in the chemically complex urban PM samples exceeded the thermodynamic predictions and removal seen in single metal salt experiments, suggesting co-precipitation and/or adsorption may have occurred. These results have broad implications for other acellular assays that study PM metals using phosphate buffer, and subsequently, the PM toxicity inferred from these assays. 
    more » « less