skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1802503

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the finite generation property for cohomology of a finite tensor category C \mathscr {C} , which requires that the self-extension algebra of the unit \operatorname {Ext}^\text {\tiny ∙ }_\mathscr {C}(\mathbf {1},\mathbf {1}) is a finitely generated algebra and that, for each object V V in C \mathscr {C} , the graded extension group \operatorname {Ext}^\text {\tiny ∙ }_\mathscr {C}(\mathbf {1},V) is a finitely generated module over the aforementioned algebra. We prove that this cohomological finiteness property is preserved under duality (with respect to exact module categories) and taking the Drinfeld center, under suitable restrictions on C \mathscr {C} . For example, the stated result holds when C \mathscr {C} is a braided tensor category of odd Frobenius-Perron dimension. By applying our general results, we obtain a number of new examples of finite tensor categories with finitely generated cohomology. In characteristic 0 0 , we show that dynamical quantum groups at roots of unity have finitely generated cohomology. We also provide a new class of examples in finite characteristic which are constructed via infinitesimal group schemes. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Abstract For a braided fusion category $$\mathcal{V}$$, a $$\mathcal{V}$$-fusion category is a fusion category $$\mathcal{C}$$ equipped with a braided monoidal functor $$\mathcal{F}:\mathcal{V} \to Z(\mathcal{C})$$. Given a fixed $$\mathcal{V}$$-fusion category $$(\mathcal{C}, \mathcal{F})$$ and a fixed $$G$$-graded extension $$\mathcal{C}\subseteq \mathcal{D}$$ as an ordinary fusion category, we characterize the enrichments $$\widetilde{\mathcal{F}}:\mathcal{V} \to Z(\mathcal{D})$$ of $$\mathcal{D}$$ that are compatible with the enrichment of $$\mathcal{C}$$. We show that G-crossed extensions of a braided fusion category $$\mathcal{C}$$ are G-extensions of the canonical enrichment of $$\mathcal{C}$$ over itself. As an application, we parameterize the set of $$G$$-crossed braidings on a fixed $$G$$-graded fusion category in terms of certain subcategories of its center, extending Nikshych’s classification of the braidings on a fusion category. 
    more » « less
  4. null (Ed.)
    We develop categorical and number-theoretical tools for the classification of super-modular categories. We apply these tools to obtain a partial classification of super-modular categories of rank [Formula: see text]. In particular we find three distinct families of prime categories in rank [Formula: see text] in contrast to the lower rank cases for which there is only one such family. 
    more » « less