- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Isayev, Olexandr (5)
-
Smith, Justin S. (4)
-
Roitberg, Adrian E. (3)
-
Zubatyuk, Roman (3)
-
Barros, Kipton (2)
-
Lubbers, Nicholas (2)
-
Tretiak, Sergei (2)
-
Devereux, Christian (1)
-
Leszczynski, Jerzy (1)
-
Nebgen, Benjamin (1)
-
Nebgen, Benjamin T. (1)
-
Spencer, Michelle J. (1)
-
Tawfik, Sherif Abdulkader (1)
-
Winkler, David A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& *Soto, E. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tawfik, Sherif Abdulkader; Isayev, Olexandr; Spencer, Michelle J.; Winkler, David A. (, Advanced Theory and Simulations)
-
Smith, Justin S.; Nebgen, Benjamin T.; Zubatyuk, Roman; Lubbers, Nicholas; Devereux, Christian; Barros, Kipton; Tretiak, Sergei; Isayev, Olexandr; Roitberg, Adrian E. (, Nature Communications)
-
Zubatyuk, Roman; Smith, Justin S.; Leszczynski, Jerzy; Isayev, Olexandr (, Science Advances)Atomic and molecular properties could be evaluated from the fundamental Schrodinger’s equation and therefore represent different modalities of the same quantum phenomena. Here, we present AIMNet, a modular and chemically inspired deep neural network potential. We used AIMNet with multitarget training to learn multiple modalities of the state of the atom in a molecular system. The resulting model shows on several benchmark datasets state-of-the-art accuracy, comparable to the results of orders of magnitude more expensive DFT methods. It can simultaneously predict several atomic and molecular properties without an increase in the computational cost. With AIMNet, we show a new dimension of transferability: the ability to learn new targets using multimodal information from previous training. The model can learn implicit solvation energy (SMD method) using only a fraction of the original training data and an archive median absolute deviation error of 1.1 kcal/mol compared to experimental solvation free energies in the MNSol database.more » « less
-
Smith, Justin S.; Roitberg, Adrian E.; Isayev, Olexandr (, ACS Medicinal Chemistry Letters)
An official website of the United States government
