skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1802920

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Kreweras words are words consisting of n $$\mathrm {A}$$ A ’s, n $$\mathrm {B}$$ B ’s, and n $$\mathrm {C}$$ C ’s in which every prefix has at least as many $$\mathrm {A}$$ A ’s as $$\mathrm {B}$$ B ’s and at least as many $$\mathrm {A}$$ A ’s as  $$\mathrm {C}$$ C ’s. Equivalently, a Kreweras word is a linear extension of the poset $$\mathsf{V}\times [n]$$ V × [ n ] . Kreweras words were introduced in 1965 by Kreweras, who gave a remarkable product formula for their enumeration. Subsequently they became a fundamental example in the theory of lattice walks in the quarter plane. We study Schützenberger’s promotion operator on the set of Kreweras words. In particular, we show that 3 n applications of promotion on a Kreweras word merely swaps the $$\mathrm {B}$$ B ’s and $$\mathrm {C}$$ C ’s. Doing so, we provide the first answer to a question of Stanley from 2009, asking for posets with ‘good’ behavior under promotion, other than the four families of shapes classified by Haiman in 1992. We also uncover a strikingly simple description of Kreweras words in terms of Kuperberg’s $$\mathfrak {sl}_3$$ sl 3 -webs, and Postnikov’s trip permutation associated with any plabic graph. In this description, Schützenberger’s promotion corresponds to rotation of the web. 
    more » « less
  2. Abstract For a Weyl group W of rank r , the W -Catalan number is the number of antichains of the poset of positive roots, and the W -Narayana numbers refine the W -Catalan number by keeping track of the cardinalities of these antichains. The W -Narayana numbers are symmetric – that is, the number of antichains of cardinality k is the same as the number of cardinality $r-k$ . However, this symmetry is far from obvious. Panyushev posed the problem of defining an involution on root poset antichains that exhibits the symmetry of the W -Narayana numbers. Rowmotion and rowvacuation are two related operators, defined as compositions of toggles, that give a dihedral action on the set of antichains of any ranked poset. Rowmotion acting on root posets has been the subject of a significant amount of research in the recent past. We prove that for the root posets of classical types, rowvacuation is Panyushev’s desired involution. 
    more » « less
  3. The cyclic sieving phenomenon of Reiner, Stanton, and White says that we can often count the fixed points of elements of a cyclic group acting on a combinatorial set by plugging roots of unity into a polynomial related to this set. One of the most impressive instances of the cyclic sieving phenomenon is a theorem of Rhoades asserting that the set of plane partitions in a rectangular box under the action of promotion exhibits cyclic sieving. In Rhoades's result the sieving polynomial is the size generating function for these plane partitions, which has a well-known product formula due to MacMahon. We extend Rhoades's result by also considering symmetries of plane partitions: specifically, complementation and transposition. The relevant polynomial here is the size generating function for symmetric plane partitions, whose product formula was conjectured by MacMahon and proved by Andrews and Macdonald. Finally, we explain how these symmetry results also apply to the rowmotion operator on plane partitions, which is closely related to promotion. 
    more » « less