- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Sakellaridis, Yiannis (1)
-
Wang, Jonathan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Let X X be an affine spherical variety, possibly singular, and L + X \mathsf L^+X its arc space. The intersection complex of L + X \mathsf L^+X , or rather of its finite-dimensional formal models, is conjectured to be related to special values of local unramified L L -functions. Such relationships were previously established in BravermanâFinkelbergâGaitsgoryâMirkoviÄ for the affine closure of the quotient of a reductive group by the unipotent radical of a parabolic, and in BouthierâNgĂ´âSakellaridis for toric varieties and L L -monoids. In this paper, we compute this intersection complex for the large class of those spherical G G -varieties whose dual group is equal to G Ë \check G , and the stalks of its nearby cycles on the horospherical degeneration of X X . We formulate the answer in terms of a Kashiwara crystal, which conjecturally corresponds to a finite-dimensional G Ë \check G -representation determined by the set of B B -invariant valuations on X X . We prove the latter conjecture in many cases. Under the sheafâfunction dictionary, our calculations give a formula for the Plancherel density of the IC function of L + X \mathsf L^+X as a ratio of local L L -values for a large class of spherical varieties.more » « less
An official website of the United States government
