skip to main content


Search for: All records

Award ID contains: 1803325

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chawla, Shuchi (Ed.)
    Understanding the complexity of approximately counting the number of weighted or unweighted independent sets in a bipartite graph (#BIS) is a central open problem in the field of approximate counting. Here we consider a subclass of this problem and give an FPTAS for approximating the partition function of the hard-core model for bipartite graphs when there is sufficient imbalance in the degrees or fugacities between the sides (L, R) of the bipartition. This includes, among others, the biregular case when λ = 1 (approximating the number of independent sets of G) and Delta_R >= 7 Delta_L log(Delta_L). Our approximation algorithm is based on truncating the cluster expansion of a polymer model partition function that expresses the hard-core partition function in terms of deviations from independent sets that are empty on one side of the bipartition. Further consequences of this method for unbalanced bipartite graphs include an efficient sampling algorithm for the hard-core model and zero-freeness results for the partition function with complex fugacities. By utilizing connections between the cluster expansion and joint cumulants of certain random variables, we go beyond previous algorithmic applications of the cluster expansion to prove that the hard-core model exhibits exponential decay of correlations for all graphs and fugacities satisfying our conditions. This illustrates the applicability of statistical mechanics tools to algorithmic problems and refines our understanding of the connections between different methods of approximate counting. 
    more » « less
  2. We present and rigorously analyze the behavior of a distributed, stochastic algorithm for separation and integration in self-organizing particle systems, an abstraction of programmable matter. Such systems are composed of individual computational particles with limited memory, strictly local communication abilities, and modest computational power. We consider heterogeneous particle systems of two different colors and prove that these systems can collectively separate into different color classes or integrate, indifferent to color. We accomplish both behaviors with the same fully distributed, local, stochastic algorithm. Achieving separation or integration depends only on a single global parameter determining whether particles prefer to be next to other particles of the same color or not; this parameter is meant to represent external, environmental influences on the particle system. The algorithm is a generalization of a previous distributed, stochastic algorithm for compression (PODC '16), which can be viewed as a special case of separation where all particles have the same color. It is significantly more challenging to prove that the desired behavior is achieved in the heterogeneous setting, however, even in the bichromatic case we focus on. This requires combining several new techniques, including the cluster expansion from statistical physics, a new variant of the bridging argument of Miracle, Pascoe and Randall (RANDOM '11), the high-temperature expansion of the Ising model, and careful probabilistic arguments. 
    more » « less