skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1803589

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Policy search methods provide a heuristic mapping between observations and decisions and have been widely used in reservoir control studies. However, recent studies have observed a tendency for policy search methods to overfit to the hydrologic data used in training, particularly the sequence of flood and drought events. This technical note develops an extension of bootstrap aggregation (bagging) and cross‐validation techniques, inspired by the machine learning literature, to improve reservoir control policy performance on out‐of‐sample hydrological sequences. We explore these methods using a case study of Folsom Reservoir, California, using control policies structured as binary trees, and streamflow resampling based on the paleo‐inflow record. Results show that calibration‐validation strategies for policy selection coupled with certain ensemble aggregation methods can improve out‐of‐sample performance in water supply and flood risk objectives over baseline performance given fixed computational costs. Our findings highlight the potential to improve policy search methodologies by leveraging these well‐established model training strategies from machine learning. 
    more » « less
  2. null (Ed.)