skip to main content


Search for: All records

Award ID contains: 1803786

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Significance Statement

    The complexity of the in‐cell environment is difficult to reproduce in the test tube. Here we validate a mimic of cellular crowding and sticking interactions in a test tube using two proteins that are differently impacted by the cell: one is stabilized and the other is destabilized. This mimic is a starting point to reproduce cellular effects on a variety of protein and biomolecular interactions, such as folding and binding.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Protein stability is subject to environmental perturbations such as pressure and crowding, as well as sticking to other macromolecules and quinary structure. Thus, the environment inside and outside the cell plays a key role in how proteins fold, interact, and function on the scale from a few molecules to macroscopic ensembles. This review discusses three aspects of protein phase diagrams: first, the relevance of phase diagrams to protein folding and functionin vitroand in cells; next, how the evolution of protein surfaces impacts on interaction phase diagrams; and finally, how phase separation plays a role on much larger length‐scales than individual proteins or oligomers, when liquid phase‐separated regions form to assist protein function and cell homeostasis.

     
    more » « less
  5. null (Ed.)