Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)The recent advances in bio-integratable electronics are creating new opportunities for investigating and directing biologically significant processes, yet their performance to date is still limited by the inherent physiochemical and signaling mismatches at the heterogeneous interfaces. Hydrogels represent a unique category of materials to bridge the gap between biological and electronic systems because of their structural/functional similarity to biological tissues and design versatility to accommodate cross-system communication. In this review, we discuss the latest progress in the engineering of hydrogel interfaces for bioelectronics development that promotes (1) structural compatibility, where the mechanical and chemical properties of hydrogels can be modulated to achieve coherent, chronically stable biotic-abiotic junctions; and (2) interfacial signal transduction, where the charge and mass transport within the hydrogel mediators can be rationally programmed to condition/amplify the bioderived signals and enhance the electrical/electrochemical coupling. We will further discuss the application of functional hydrogels in complex physiological environments for bioelectronic integration across different scales/biological levels. These ongoing research efforts have the potential to blur the distinction between living systems and artificial electronics, and ultimately decode and regulate biological functioning for both fundamental inquiries and biomedical applications.more » « less
-
Living electronics that converges the unique functioning modality of biological and electrical circuits has the potential to transform both fundamental biophysical/biochemical inquiries and translational biomedical/engineering applications. This article will review recent progress in overcoming the intrinsic physiochemical and signaling mismatches at biological/electronic interfaces, with specific focus on strategic approaches in forging the functional synergy through: (1) biohybrid electronics, where genetically encoded bio-machineries are hybridized with electronic transducers to facilitate the translation/interpretation of biologically derived signals; and (2) biosynthetic electronics, where biogenic electron pathways are designed and programmed to bridge the gap between internal biological and external electrical circuits. These efforts are reconstructing the way that artificial electronics communicate with living systems, and opening up new possibilities for many cross-disciplinary applications in biosynthesis, sensing, energy transduction, and hybrid information processing.more » « less
An official website of the United States government
