skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1804085

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Multi‐elemental alloy (MEA) nanoparticles have recently received notable attention owing to their high activity and superior phase stability. Previous syntheses of MEA nanoparticles mainly used carbon as the support, owing to its high surface area, good electrical conductivity, and tunable defective sites. However, the interfacial stability issue, such as nanoparticle agglomeration, remains outstanding due to poor interfacial binding between MEA and carbon. Such a problem often causes performance decay when MEA nanoparticles are used as catalysts, hindering their practical applications. Herein, an interface engineering strategy is developed to synthesize MEA–oxide–carbon hierarchical catalysts, where the oxide on carbon helps disperse and stabilize the MEA nanoparticles toward superior thermal and electrochemical stability. Using several MEA compositions (PdRuRh, PtPdIrRuRh, and PdRuRhFeCoNi) and oxides (TiO2and Cr2O3) as model systems, it is shown that adding the oxide renders superior interfacial stability and therefore excellent catalytic performance. Excellent thermal stability is demonstrated under transmission electron microscopy with in situ heating up to 1023 K, as well as via long‐term cycling (>370 hours) of a Li–O2battery as a harsh electrochemical condition to challenge the catalyst stability. This work offers a new route toward constructing efficient and stable catalysts for various applications. 
    more » « less
  2. Abstract Mixing multimetallic elements in hollow‐structured nanoparticles is a promising strategy for the synthesis of highly efficient and cost‐effective catalysts. However, the synthesis of multimetallic hollow nanoparticles is limited to two or three elements due to the difficulties in morphology control under the harsh alloying conditions. Herein, the rapid and continuous synthesis of hollow high‐entropy‐alloy (HEA) nanoparticles using a continuous “droplet‐to‐particle” method is reported. The formation of these hollow HEA nanoparticles is enabled through the decomposition of a gas‐blowing agent in which a large amount of gas is produced in situ to “puff” the droplet during heating, followed by decomposition of the metal salt precursors and nucleation/growth of multimetallic particles. The high active sites per mass ratio of such hollow HEA nanoparticles makes them promising candidates for energy and electrocatalysis applications. As a proof‐of‐concept, it is demonstrated that these materials can be applied as the cathode catalyst for Li–O2battery operations with a record‐high current density per catalyst mass loading of 2000 mA gcat.−1, as well as good stability and durable catalytic activity. This work offers a viable strategy for the continuous manufacturing of hollow HEA nanomaterials that can find broad applications in energy and catalysis. 
    more » « less
  3. null (Ed.)